Termodinâmica e Mecânica Estatística Lista de Exercícios Prof. Ronaldo

7 de agosto de 2020

1 Ensemble microcanônico

- 1. Considere um sistema isolado por paredes impermeáveis e adiabáticas composto por dois subsistemas descritos por $S_1(U_1,V_1,N_1)$ e $S_2(U_2,V_2,N_2)$. Usando a maximização da entropia total $S=S_1+S_2$, determine o estado de equilíbrio quando a parede de separação entre os sistemas passa a ser:
 - (a) diatérmica e fixa,
 - (b) diatérmica e móvel.
- 2. A partir do número de estados microscópicos do paramagneto ideal de spin 1/2, determine s(u), T(u) e u(T).
- 3. A partir do número de estados microscópicos de um linha de osciladores quânticos ideias, determine $s\left(u\right), T\left(u\right), u\left(T\right)$ e o calor específico, verificando seu limite para $T \rightarrow 0$.

2 Ensemble canônico

- 1. Usando o ensemble canônico, determine a entropia s(T) do Sólido de Einstein e com essa função o calor específico, mostrando que este é compatível com resultado obtido com o ensemble microcanônico.
- 2. Para um sistema com dois níveis de energia

$$E = \begin{cases} 0 \\ \varepsilon \end{cases} ,$$

usando o ensemble canônico, determine a energia livre de Helmholtz, $s\left(T\right),u\left(T\right)$. Verifique se a função $s\left(T\right)$ encontrada satisfaz a terceira lei da termodinâmica.

3. Partindo da função de partição canônica do gás ideal monoatômico clássico,

$$Z = \frac{1}{N!} \left(\frac{2\pi m}{\beta h^2} \right)^{3N/2} V^N \,, \label{eq:Z}$$

determine o calor específico c_V e lei dos gases ideais, $pv=k_BT$.