

Probabilidade e Estatística

Aula 3 Medidas Numéricas Descritivas

Leitura: Levine et al. Capítulo 3

Objetivos

Nesta parte, aprenderemos:

- a descrever as propriedades de tendência central, variação e formato em dados numéricos
- a calcular medidas resumo para a população
- a construir e interpretar um Box- plot
- a descrever a covariância e o coeficiente de correlação

Exemplo

 Uma pesquisa em uma certa cidade perguntou a 15 pessoas, escolhidas aleatoriamente, o tempo de viagem de casa para o trabalho em minutos:

30 20 10 40 25 20 10 60 15 40 5 30 12 10 10

• Em rol:

5 10 10 10 10 12 15 20 20 25 30 30 40 40 60

Exemplo

- Diagrama ramo-e-folha:
- Distribuição assimétrica
- Maior tempo de viagem = 60 min

```
0 | 5

1 | 000025

2 | 005

3 | 00

4 | 00

5 |

6 | 0
```

 Vamos aprender a descrever, com números, o centro e a dispersão das distribuções de dados!!

Definições

- A tendência central corresponde à extensão na qual todos os valores de dados se agrupam em torno de um valor central típico.
- A variação corresponde ao montante de dispersão, ou espalhamento, de valores em relação a um valor central.
- O formato corresponde ao padrão da distribuição de valores do valor mais baixo para o mais alto.

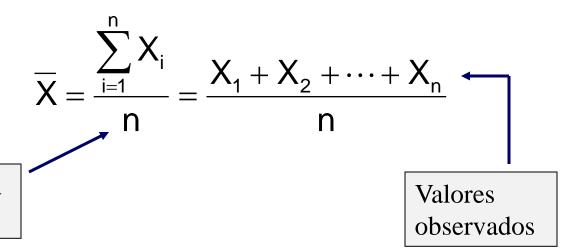
Medidas de Tendência Central

- tendência central: valores no centro da distribuição, em torno dos quais os dados se agrupam.
- Medidas tipicamente usadas:
 - Média aritmética
 - Mediana
 - Moda

Média

 A média aritmética (média) é a mais comum das medidas de tendência central.

Para uma amostra de tamanho n:



Tamanho da amostra

Exemplo: Média

 A tabela abaixo lista o tempo de viagem de casa para o trabalho de 15 pessoas em minutos:

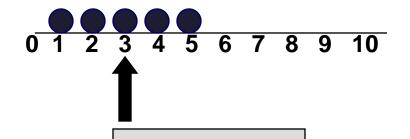
X ₁	X_2	X ₃	X_4	X ₅	x ₆	X ₇	X ₈	X ₉	X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅
30	20	10	40	25	20	10	60	15	40	5	30	12	10	10

O tempo médio de viagem das pessoas é:

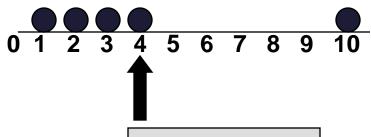
$$\bar{x} = \frac{\sum_{i=1}^{15} x_i}{n} = \frac{30 + 20 + \dots + 10}{15} = \frac{337}{15} = 22.5 \text{ min}$$

Média

- Média = soma dos valores dividido pelo número de valores
- Afetada por valores atípicos, também chamados de valores extremos ou outliers.



$$\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$$



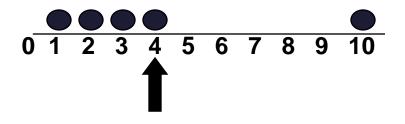
$$Média = 4$$

$$\frac{1+2+3+4+10}{5} = \frac{20}{5} = 4$$

Média:o ponto de equilíbrio

 A média é « Ponto de equilíbrio » em um conjunto de dados (gangorra),

onde todos os valores desempenham um papel igual (mesma massa).



$$Média = 4$$

$$(1-4)+(2-4)+(3-4)+(4-4)+(10-4)=0$$

Média:o ponto de equilíbrio

Propriedade: A soma dos desvios em relação a média é nula.

$$\sum_{i=1}^{n} (X_i - \bar{X}) = \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \bar{X}$$

$$= \sum_{i=1}^{n} X_i - n\bar{X} = 0$$

Desvio de X_i em relação a média \bar{X} :

o desvio mede a "distância" entre o valor e a média: tem sinal "-" para valores abaixo da média e "+" para valores acima da média.

Média

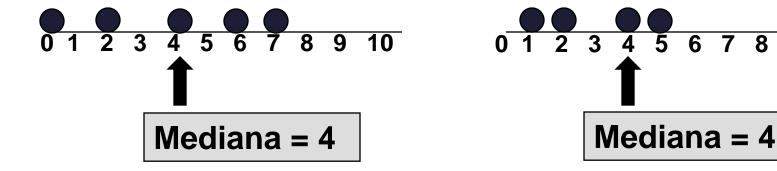
• **Propriedade**: é o valor que minimiza a soma do quadrado dos desvios:

$$\bar{X} = \arg\min_{c} \sum_{i=1}^{n} (X_i - c)^2$$

Ou seja, imagine que estamos buscando o valor *c* (que vamos considerar como "centro" dos dados), tais que a "distância" (medida pela soma dos quadrados dos desvios) dos outros valores em relação a *c* seja a menor possível. Este valor *c* sempre é a média!

Mediana

• Em um rol (lista dos dados em ordem crescente), a mediana é o "número" do meio, (50% acima, 50% abaixo)



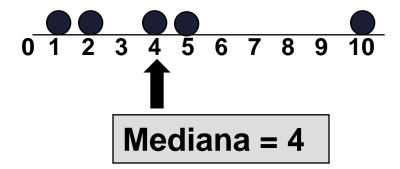
Não é afetada por valores atípicos (extremos)

Localizando a Mediana

- A mediana de um **conjunto de dados ordenados** é localizada na posição: $\frac{n+1}{2}$.
 - Se o número de valores é *impar*, $\frac{n+1}{2}$ é inteiro. Então, a mediana é o número do meio.
 - Se o número de valores é par, $\frac{n+1}{2}$ não é inteiro. Então, adotamos a convenção de que mediana é a média dos dois valores do meio.

A Mediana

• Em um rol, a mediana é o "número" do meio, (50% acima, 50% abaixo)

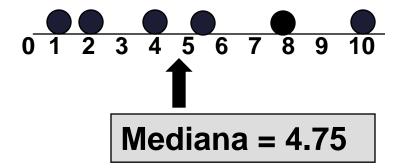


- Exemplo com n=5 (número ímpar).
- Posição da mediana = (5+1)/2=3.
- Então, a mediana é o 3º valor no rol, ou seja,

mediana=4

A Mediana

- Em um rol, a mediana é o "número" do meio, (50% acima, 50% abaixo)
- Exemplo: valores dos dados são: 1.1, 2.1, 4, 5.5, 7.9, 10



- Exemplo com n = 6 (número par)
- Posição da mediana = (6+1)/2=3.5, entre o 3° e o 4° valor no rol:

$$mediana = \frac{3^{\circ} \ valor + 4^{\circ} \ valor}{2} = \frac{4 + 5.5}{2} = 4.75$$

Exercício: Mediana

Exercício: Determine o tempo **mediano** de viagem de casa para o trabalho para as pessoas da cidade.

X ₁	X_2	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉	X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅
30	20	10	40	25	20	10	60	15	40	5	30	12	10	10

Solução:

- O tamanho da amostra é: n = 15 (ímpar)
- Posição da mediana: $\frac{n+1}{2} = \frac{15+1}{2} = 8$
- A mediana é o 8° valor no rol!
- Para estes dados o rol é: 5,10,10,10,10,12,15,20,20,25,30,30,40,40,60
- Então a mediana é: 20 minutos.

Mediana

 Propriedade: A mediana é o valor que minimiza a soma do valor das distâncias (valor absoluto dos desvios):

$$Mediana = arg \min_{c} \sum_{i=1}^{n} |X_i - c|$$

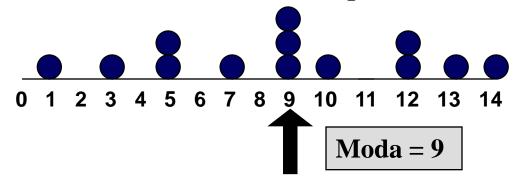
Ou seja, imagine que estamos buscando o valor *c* (que vamos considerar como "centro" dos dados), tais que a distância dos outros valores em relação a *c* seja a menor possível. Este valor *c* sempre é a mediana!

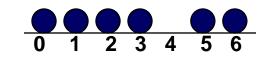
Média x Mediana

- Vimos que a média é afetada por valores extremos, enquanto a mediana é robusta a valores extremos.
- Para visualizar melhor esta diferença de comportamento entre média e mediana, vejam o <u>applet</u> « Mean and Median ».
 - Exercício: Escolher 9 pontos ao acaso no aplicativo. Agora adicione um 10° ponto bem afastado dos demais. O que vo espera que aconteça com a média? E com a mediana?
 - Exercício: Escolher 5 pontos ao acaso no aplicativo. Agora tente acrescentar pontos de forma que a média e a mediana coincidam.

Medidas de Tendência Central: a moda

- A moda é o valor que ocorre com maior frequência.
- Usada tanto para dados numéricos quanto para dados categóricos (cuidado: afetada pela escolha de classes de agrupamento)
- Pode não haver moda e pode haver várias modas
- Não é afetada por valores extremos





Sem Moda

Exemplo

 Uma pesquisa em uma certa cidade perguntou a 15 pessoas, escolhidas aleatoriamente, o tempo de viagem de casa para o trabalho em minutos:

30 20 10 40 25 20 10 60 15 40 5 30 12 10 10

• Em rol:

5 10 10 10 10 12 15 20 20 25 30 30 40 40 60

Qual é a moda?

Medidas de Tendência Central: Exemplo

Preços das casas:

\$2,000,000 500,000 300,000 100,000

Soma 3,000,000

Média: (\$3,000,000/5)

= \$600,000

 Mediana: valor do meio dos dados ordenados

= \$300,000

Moda: valor mais frequente

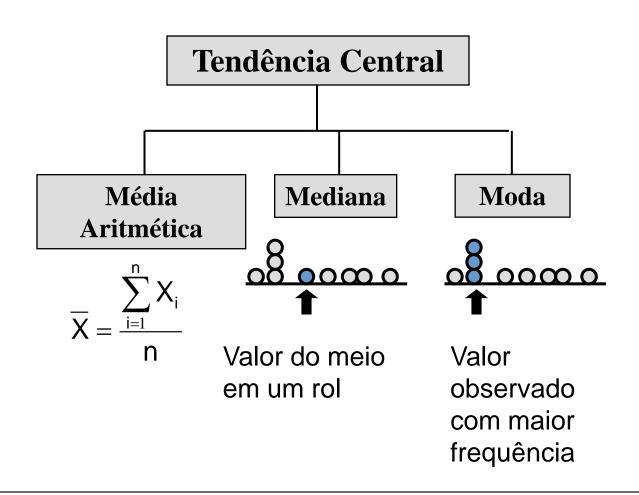
= \$100,000

Medidas de Tendência Central: Qual medida escolher?

 A média geralmente é usada, a menos que existam valores extremos e com distribuição muito assimétricas.

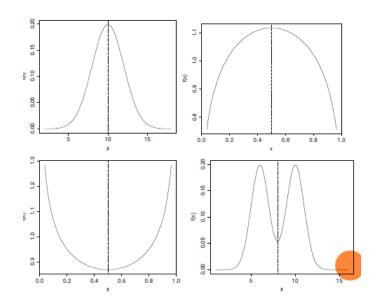
Nesse caso, a mediana é a mais usada, uma vez que não é sensível a valores extremos. Por exemplo, o preço mediano de casas pode ser registrado para uma região por ser menos sensível a valores extremos.

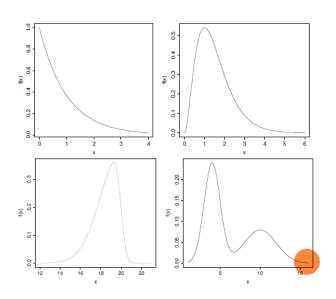
Medidas de Tendência Central: Resumo



Formato de uma Distribuição

• Medidas de formato tentam captar, em um número, características da distribuição dos dados como assimetria e "achatamento".



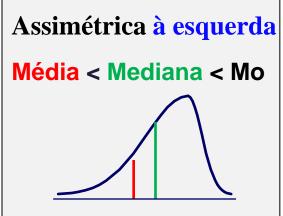


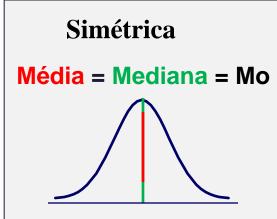
Não vamos ver medidas numéricas de formato. As medidas mais usadas

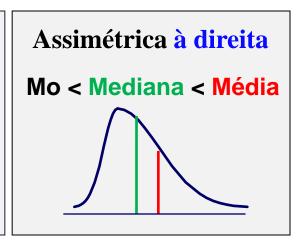
são: assimetria e curtose.

Formato de uma Distribuição

 Para dados com uma única moda, a relação entre moda, mediana e média nos fornecem uma ideia sobre a simetria de uma distribuição:







Obs: a assimetria segue a direção da cauda longa da distribuição.

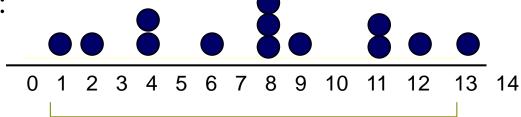
Medidas de Variação

- Medidas de variação medem a dispersão de valores em um conjunto de dados, i. e., o grau de afastamento dos dados em torno de um valor central.
- Medidas absolutas: (Amplitude, Amplitude interquartil, Variância e Desvio-padrão)
- Indicam se um conjunto de dados é homogêneo ou heterogêneo.

Amplitude

- Medida de variação mais simples
- Amplitude é definida como a diferença entre o maior e o menor dos valores:

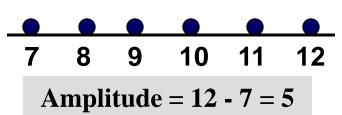
$$Amplitude = X_{maior} - X_{menor}$$

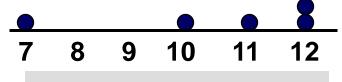


Amplitude =
$$13 - 1 = 12$$

Desvantagens da Amplitude

Ignora a forma na qual os dados são distribuídos:





Sensível a outliers

Amplitude =
$$120 - 1 = 119$$

Exemplo

 Uma pesquisa em uma certa cidade perguntou a 15 pessoas, escolhidas aleatoriamente, o tempo de viagem de casa para o trabalho em minutos:

30 20 10 40 25 20 10 60 15 40 5 30 12 10 10

• Em ordem crescente:

5 10 10 10 10 12 15 20 20 25 30 30 40 40 60

- A amplitude é: 60 5 = 55 min
- Afetada pelo valor atípico...
- Como podemos ter uma ideia da variação que não seja sensível a valores atípicos?

Medidas Separatrizes

- Medidas separatrizes são valores que dividem o rol em partes iguais.
- Medidas separatrizes tipicamente usadas:
 - Quartis (4 partes)
 - Decis (10 partes)
 - Centis (100 partes)
 - A nomenclatura geral é: quantil ou pertencil

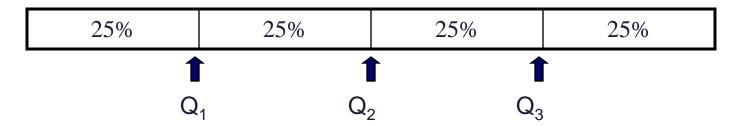
Exercício: Quartis

• Exercício: Você tem uma corda de um metro e deseja separá-la em 4 pedaços de 25 cm.

- Você deve cortar a corda em quantos pontos?
- Quais são estes pontos?

Quartis

 Quartis dividem os dados ordenados em 4 segmentos com o mesmo número de valores por segmento.



- O primeiro quartil, Q₁, é o valor para o qual 25% das observações são menores e 75% são maiores do que ele.
- Q₂ é o mesmo que a mediana (50% são menores, 50% são maiores)
- Apenas 25% dos valores são maiores do que o terceiro quartil, Q_{3.}

Localizando Quartis

Encontre os quartis ao determinar o valor correspondente a posição apropriada nos dados ordenados, onde

Posição do primeiro quartil: $Q_1 = (n+1)/4^{\circ}$ valor ordenado

Posição do segundo quartil: $Q_2 = (n+1)/2^{\circ}$ valor ordenado

Posição do terceiro quartil: $Q_3 = 3(n+1)/4^{\circ}$ valor ordenado

em que **n** é o número observado de valores

ESTA É A **POSIÇÃO** DOS QUARTIS NOS **DADOS ORDENADOS**!!

Localizando Quartis

Posição dos quartis:

$$P_{Q_1} = \frac{1}{4}(n+1)$$

$$P_{Q_2} = \frac{1}{2}(n+1)$$

$$P_{Q_3} = \frac{3}{4}(n+1)$$

- **Regra 1:** se a posição de um quartil é um número inteiro, então o quartil corresponde ao valor ordenado nesta posição.
- Regra 2: se a posição é uma fração com 0.5 (2.5, 3.5, etc), então o quartil é igual a <u>média dos valores</u> correspondendo as posições adjacentes (2 e 3, 3 e 4, etc).
- Regra 3: se a posição não é um nº inteiro, nem uma fração com 0.5, então <u>arredonda-se</u> a posição para o inteiro mais próximo e determina-se o valor correspondente.

Localizando o Primeiro Quartil

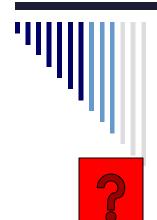
 Exemplo: Encontre o primeiro quartil para os dados a seguir:

Primeiro, note que n = 9.

 Q_1 esta na posição (9+1)/4 = 2.5 dos dados ordenados, então é o valor médio entre os 2° e 3° valores ordenados,

$$Q_1 = 12.5$$

 Q_1 e Q_3 são medidas de locação não centrais Q_2 = mediana, é uma medida de tendência central



Exercício: Quartis

 Uma pesquisa em uma certa cidade perguntou a 15 pessoas, escolhidas aleatoriamente, o tempo de viagem de casa para o trabalho em minutos:

30 20 10 40 25 20 10 60 15 40 5 30 12 10 10

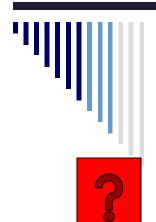
• Em rol:

5 10 10 10 10 12 15 20 20 25 30 30 40 40 60

 Quais são os quartis da distribuição do tempo de viagem??

Medidas de Variação: Amplitude Interquartil

- Uma boa medida de dispersão dos dados, que não é sensível a valores atípicos, é a Amplitude Interquartil (AIQ).
- A Amplitude Interquartil elimina alguns dos maiores e menores valores e calcula a amplitude apenas com os valores restantes.
- Amplitude Interquartil = 3° quartil 1° quartil = $\mathbf{Q}_3 \mathbf{Q}_1$



Exercício: Quartis

 Uma pesquisa em uma certa cidade perguntou a 15 pessoas, escolhidas aleatoriamente, o tempo de viagem de casa para o trabalho em minutos:

30 20 10 40 25 20 10 60 15 40 5 30 12 10 10

• Em rol:

5 10 10 10 10 12 15 20 20 25 30 30 40 40 60

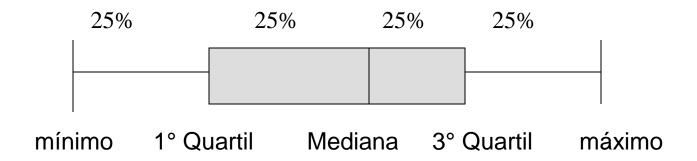
Qual é a Amplitude Interquartil do tempo de viagem?

Resumo de Cinco Números

- Um Resumo de Cinco números consiste de:
 - Mínimo (X_{menor})
 - Primeiro Quartil (Q₁)
 - Mediana (Q₂)
 - Terceiro Quartil (Q₃)
 - Máximo (X_{maior})

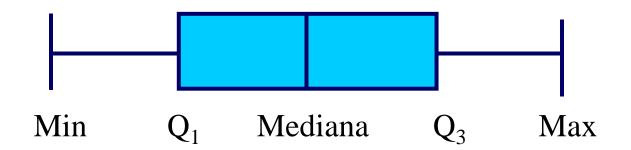
Box-Plot (diagrama de caixa)

 O Box-Plot é uma apresentação gráfica dos resumo de 5 números.



Box-Plot

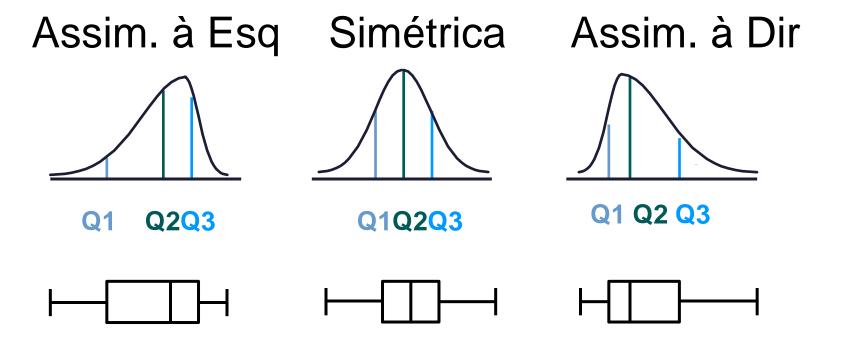
 O quadro e a linha central estão localizados no meio dos pontos extremos se os dados forem simétricos em torno da média.



 Um gráfico Box-Plot pode ser apresentado tanto na vertical quanto na horizontal.

Box-Plot

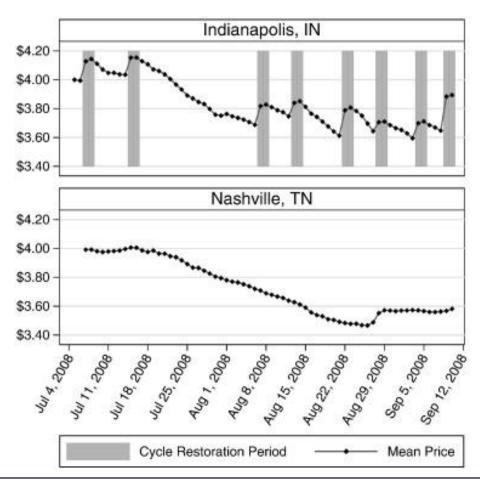
Quando os dados tem uma única moda, o box-plot nos dá uma ideia da direção da assimetria nos dados (sem precisar olhar a distribuição).



Análise Exploratória de Dados: Box-Plot

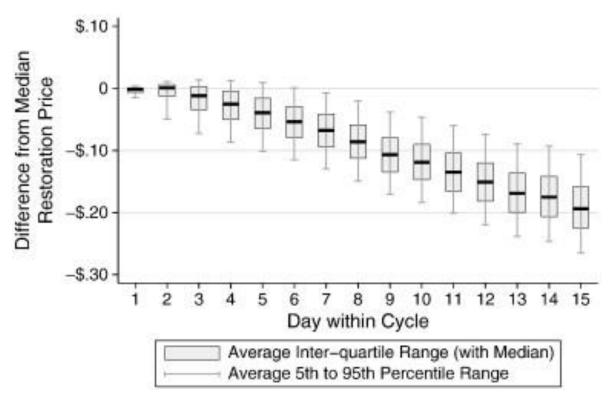
- Formas alternativas para o « bigode » do box-plot:
 - Mínimo e máximo
 - 2° e 98° percentis.
 - 1° e 99° percentis.
 - Um desvio padrão abaixo e acima da média.
 - O menor dado dentro de 1.5 AIQ (Amplitude interquartil) de Q₁ e o maior dado dentro de 1.5 AIQ de Q₃.

Análise Exploratória de Dados: Box-Plot



Fonte: Lewis (2012) http://www.sciencedirect.com/science/artic le/pii/S0167718711001081

Análise Exploratória de Dados: Box-Plot



Fonte: Lewis (2012)

http://www.sciencedirect.com/science/article/pii/S0167718711001081

Variância e Desvio-padrão

- O resumo dos 5 números <u>não</u> é a descrição numérica mais comum de uma distribuição de dados.
- As medidas mais usadas para descrever os dados são:
 - Média (tendência central)
 - Variância ou desvio-padrão (variação)!!

Medem o quanto as observações se afastam da média...

Medidas de Variação: Variância

 A variância é a média (aproximadamente*) do quadrado dos desvios dos valores em relação a média.

Variância Amostral:

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

Em que \overline{X} = média aritmética

n = tamanho da amostra

 $X_i = i^{esimo}$ valor da variável X

* (n-1: graus de liberdade)

Medidas de Variação: Desvio-padrão

- Medida de variação mais utilizada: "desvio médio* dos dados em relação a média".
- Mostra variações em relação a média
- Raiz quadrada da variância
- Tem a mesma unidade dos dados originais

Desvio-padrão amostral:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}}$$

Medidas de Variação: Desvio-padrão

Passos para computar o desvio-padrão amostral

- 1. Compute a diferença entre cada valor e a média.
- 2. Eleve esta diferença ao quadrado.
- 3. Some os quadrados das diferenças.
- 4. Divida o total por n-1 para obter a variância amostral.
- 5. Tire a raiz quadrada da variância amostral para obter o desvio padrão amostral.

Medidas de Variação: Desvio-padrão

Dados

Amostrais (X_i) : 10 12 14 15 17 18 18 24

$$n = 8$$
 Média = $\overline{X} = 16$

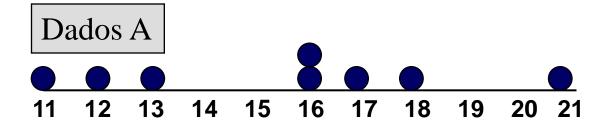
$$S = \sqrt{\frac{(10 - \overline{X})^2 + (12 - \overline{X})^2 + (14 - \overline{X})^2 + \dots + (24 - \overline{X})^2}{n - 1}}$$

$$=\sqrt{\frac{(10-16)^2+(12-16)^2+(14-16)^2+\cdots+(24-16)^2}{8-1}}$$

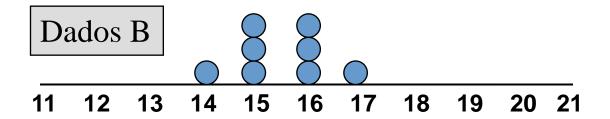
$$=\sqrt{\frac{130}{7}} = \boxed{4.31}$$

 $=\sqrt{\frac{130}{7}}$ = 4.31 \implies Uma medida de afastamento "médio" dos dados em relação à média.

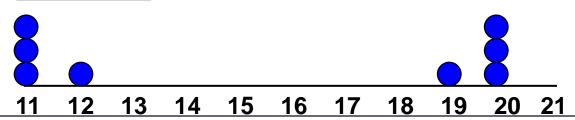
Medidas de Variação: Comparando Desvios-padrão



Média = 15.5S = 3.338

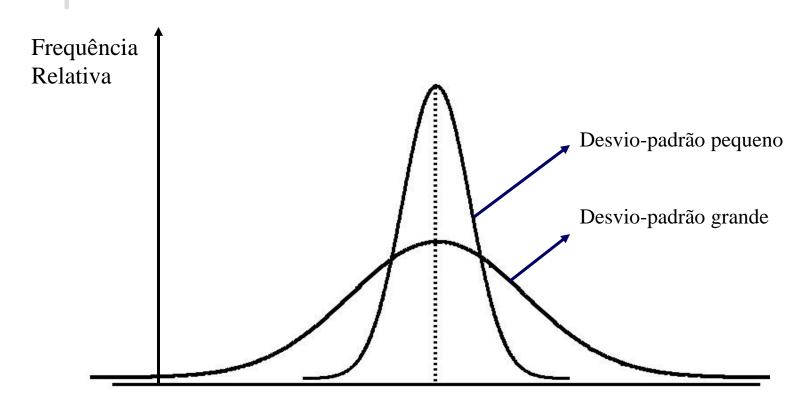


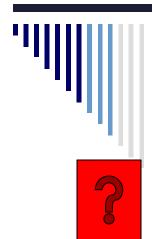
Média = 15.5S = 0.926



Média = 15.5S = 4.570

Medidas de Variação: Comparando Desvios-padrão





Exercício: Desvio-padrão

 A taxa metabólica de uma pessoa é a taxa segundo a qual o corpo consume energia. Veja abaixo a taxa metabólica (calorias/dia) de 3 homens que participaram de uma dieta.

1792 1666 1362

- a) Determine a taxa metabólica média.
- b) Determine o desvio-padrão.

Exercício: Desvio-padrão

■ Solução: n=3

1792 1666 1362

a) Determine a taxa metabólica média.

	X _i
	1792
	1666
	1362
Soma:	4820
Média:	1606.67

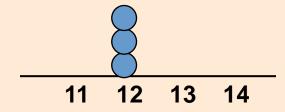
Exercício: Desvio-padrão

- Solução: n=3
- b) Determine o desvio-padrão.

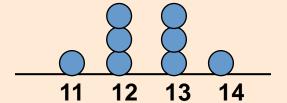
$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

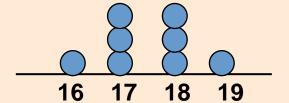
	Média= 1606.67		97730.67/2=48865.33	S=raiz(48865.33) = 221.05
Soma:	4820	-0.01	97730.67	
	1362	1362-1606.67 -244.67	(-244.67) ² = 59863.40	
	1666	1666-1606.67 59.33	59.33 ² = 3520.05	
	1792	1792- 1606.67= 185.33	185.33 ² = 34347.21	
	X _i	(X _i -Média)	(X _i -Média) ²	

Propriedade 1: A variância de uma constante é nula;



Propriedade 2: A variância da soma ou diferença de uma constante k com uma variável é igual a variância da variável;





Propriedade 1: A variância de uma constante é nula;

Para uma base de dados com n dados: $x_1 = x_2 = \cdots = x_n = k$

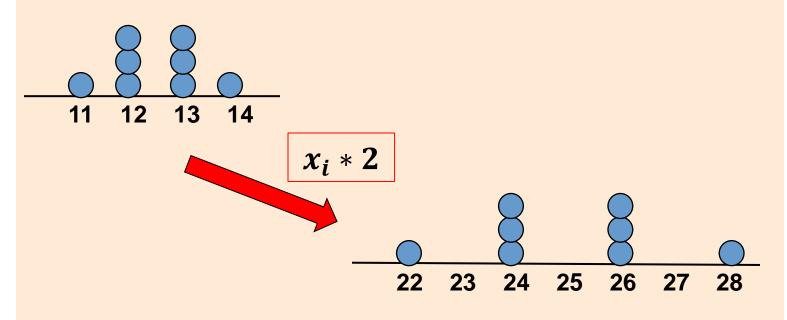
$$S^{2}(k) = \frac{\sum_{i=1}^{n} (x_{i} - \overline{X})^{2}}{n-1} = \frac{\sum_{i=1}^{n} (k-k)^{2}}{n-1} = 0$$

Propriedade 2: A variância da soma ou diferença de uma constante k com uma variável é igual a variância da variável;

Para uma base de dados com n dados: $x_1 = x_2 = \cdots = x_n$. Some k unidades para cada valor. A variância é:

$$S^{2}(x+k) = \frac{\sum_{i=1}^{n} (x_{i} + k - (\overline{X} + k))^{2}}{n-1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{X})^{2}}{n-1} = S^{2}$$

Propriedade 3: A variância do produto de uma constante por uma variável é igual ao produto do quadrado da constante pela variância da variável.



Propriedade 3: A variância do produto de uma constante por uma variável é igual ao produto do quadrado da constante pela variância da variável.

Para uma base de dados com n dados: $x_1 = x_2 = \cdots = x_n$.

$$S^{2}(kx) = \frac{\sum_{i=1}^{n} (kx_{i} - \overline{kX})^{2}}{n-1} = \frac{\sum_{i=1}^{n} k^{2} (x_{i} - \overline{X})^{2}}{n-1}$$
$$= k^{2} \frac{\sum_{i=1}^{n} (x_{i} - \overline{X})^{2}}{n-1} = k^{2} S^{2}(x)$$

Medidas Numéricas Descritivas para a População

- As estatísticas descritivas discutidas descrevem uma amostra e não a população.
- Medidas descritivas para a população são chamadas de parâmetros e geralmente denotadas por letras gregas.
- Parâmetros de população importantes são a média populacional, a variância populacional e desviopadrão populacional.

Média Populacional

 A média populacional é a soma dos valores na população dividida pelo tamanho da população, N.

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N} = \frac{X_1 + X_2 + \dots + X_N}{N}$$

Em que

 $\mu = média populacional$

N =tamanho da população

 $X_i = i^{\text{ésimo}}$ valor da variável X

Variância Populacional

 A variância populacional é a média do quadrado dos desvios dos valores em relação a média populacional.

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

Em que $\mu = \text{média populacional}$

N =tamanho da população

 $X_i = i^{\text{\'esimo}}$ valor da variável X

Desvio-Padrão Populacional

- O desvio-padrão populacional é a medida de variação populacional mais usada.
- A raiz da variância.
- Ele tem a mesma unidade que os dados originais.

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

Em que

 μ = média populacional

N =tamanho da população

 $X_{\rm i} = {\rm i}^{\rm \acute{e}simo}$ valor da variável X

Estatísticas Amostrais Versus Parâmetros Populacionais

Medida	Parâmetro Populacional	Estatística Amostral
Média	μ	\overline{X}
Variância	σ^2	S^2
Desvio - Padrão	σ	S

Localizando Valores Extremos

- Duas alternativas diferentes são usadas para localizar valores atípicos (extremos) dependendo das medidas usadas para variação:
 - **Regra 1:** Usando Amplitude Interquartil
 - Regra 2: Usando o Desvio-padrão (Escore-Z)

Localizando Valores Extremos 1.5 AIQ

- Vimos que a Amplitude Interquartil compreende 50% dos dados.
- Uma regra para localizar valores extremos é identificar dados que são:
 - Menores do que Q1 1.5AIQ
 - Maiores do que Q3 + 1.5AIQ

Um valor, X_i , é considerado **extremo** se: $X_i \le Q_1 - 1.5(Q_3 - Q_1)ou X_i \ge Q_3 + 1.5(Q_3 - Q_1)$

Localizando Valores Extremos 1.5 AIQ

Exercício: Abaixo estão descritos os tempos de viagem para 20 cidadãos de Nova Yorque, já arranjados em ordem crescente.

5 10 10 15 15 15 15 20 20 20 | 25 30 30 40 40 45 60 60 65 85

Existe algum valor extremo?

Localizando Valores Extremos 1.5 AIQ

Solução:

Os quartis destes dados são: $Q_1=15$, $Q_2=22.5$ e $Q_3=45$ Amplitude Interquartil: AIQ = 45 - 15 = 301.5*AIQ = 1.5*30 = 45

- Os valores extremos caem:
 - Abaixo de Q1-1.5*AIQ = 15 45 = -30
 - Acima de Q3+1.5*AIQ = 45 + 45 = 90
 - Portanto, o tempo de viagem de 85 min não é extremo (ou atípico).

Localizando Valores Extremos: Escore-Z

- O Escore-Z, Z_i , de um valor X_i é a "distância" que este valor está da média medida em unidades de desviopadrão.
- Para computar o escore-Z de um dado, diminua a média e divida pelo desvio-padrão.
- Quanto maior o valor absoluto do escore-Z, mais longe o valor está da média.

Um valor X_i é considerado **extremo** se e somente se: $Z_i \le -3$ ou $Z_i \ge 3$

Localizando Valores Extremos: Escore-Z

$$Z_i = \frac{X_i - \overline{X}}{S}$$

Em que X_i representa o valor do dado observado \overline{X} é a média amostral S é o desvio-padrão amostral

Mede a distância em desvio-padrões de um certo valor X_i em relação a média.

Localizando Valores Extremos: Escore-Z

Exercício: Suponha que a nota média de um teste seja de 490 e desvio-padrão de 100.

Calcule o Escore-Z de um aluno com nota 620.

$$Z_i = \frac{X_i - \overline{X}}{S} = \frac{620 - 490}{100} = \frac{130}{100} = 1.3$$

Um escore de 620 equivale a 1.3 desvios-padrão acima da média e portanto não seria considerado um valor extremo.

Medidas numéricas para 2 variáveis

- Até agora trabalhamos com medidas para a descrição de apenas uma variável.
- Geralmente temos diversas variáveis que se relacionam entre si...
- Veremos agora medidas para a força da relação entre 2 variáveis!!

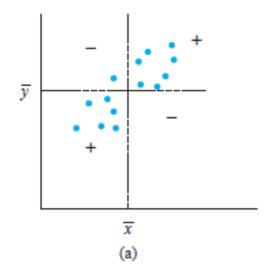
- A covariância amostral mede a força da relação linear entre duas variáveis.
- A covariância mede se as duas variáveis se movem juntas!

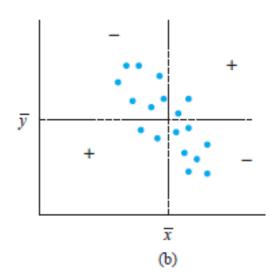
Covariância amostral:

$$Cov(X,Y) = \frac{\sum_{i=1}^{n} \{(X_i - \bar{X}) * (Y_i - \bar{Y})\}}{n-1}$$

A covariância amostral

$$Cov(X,Y) = \frac{\sum_{i=1}^n \{(X_i - \overline{X}) * (Y_i - \overline{Y})\}}{n-1}$$





• Covariância, cov(X,Y), entre duas variáveis:

Positiva: X e Y tendem a se mover na mesma direção.

- X_i 's grandes observados ao mesmo tempo que Y_i 's grandes
- X_i 's pequenos observados ao mesmo tempo que Y_i 's pequenos

Negativa: X e Y tendem a se mover em direções opostas.

- X_i 's grandes observados ao mesmo tempo que Y_i 's pequenos
- X_i 's pequenos observados ao mesmo tempo que Y_i 's grandes

Nula: X e Y são linearmente independentes.

- A covariância depende das dimensões usadas...
- Assim, ao olharmos o valor calculado podemos apenas analisar o seu sinal, a magnitude não contém informação alguma sobre a força da relação entre variáveis.
 - Ex: Cov(X,Y) = 25 kg*m quando X é medido em m e Y em kg.
 - \rightarrow Cov(X,Y) = 2500 kg*cm quando X em cm e Y em kg.

Por isso, usamos a correlação!

- O coeficiente de correlação mede a força relativa da relação linear entre duas variáveis.
- Coeficiente de correlação amostral:

$$r = \frac{\sum_{i=1}^{n} \{(X_i - \bar{X}) * (Y_i - \bar{Y})\}}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} * \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left\{ \frac{(X_i - \bar{X})}{S_X} * \frac{(Y_i - \bar{Y})}{S_Y} \right\} = \frac{Cov(X, Y)}{S_X * S_Y}$$

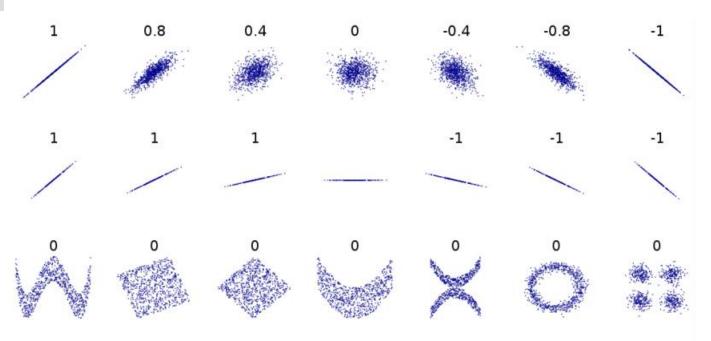
Coeficiente de Correlação: Propriedades

Propriedades do coeficiente de correlação:

- Adimensional
- Varia entre −1 e 1
- Quanto mais próximo de −1 mais forte é a relação linear negativa entre as variavies
- Quanto mais próximo de 1, mais forte é a relação linear positiva entre as variáveis.
- Quanto mais próximo de 0, mais fraca é a relação linear entre as variáveis.

Ver applet <u>« regression by eye »</u>

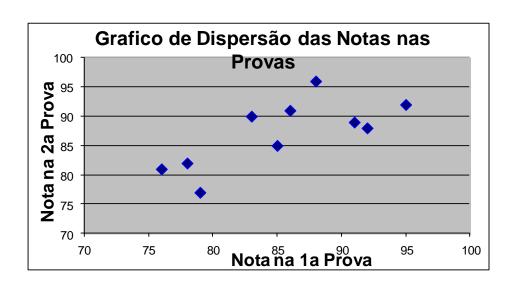




A correlação mede apenas a grau em que uma reta aproxima a relação entre duas variáveis e a direção da relação linear entre elas. A correlação não mede a inclinação da relação ou relações não lineares entre 2 variáveis.

Coeficiente de Correlação: Exemplo

- r = 0.733
- Claramente existe uma relação linear positiva entre a nota na 1^a prova e a nota na 2^a prova.
- Alunos que tiraram notas boas na 1^a prova tendem a tirar notas boas na 2^a prova.



Exercício: Supõe-se que o conteúdo de hidrogênio (X) seja um fator importante na porosidade (Y) de fundições de liga de alumínio. Utilize os dados abaixo para calcular a correlação entre conteúdo de hidrogénio e porosidade:

X	0.18	0.20	0.21	0.22	0.30
Υ	0.46	0.70	0.41	0.44	0.72

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}} = \frac{\text{cov}(X, Y)}{S_X S_Y}$$

- Solução:
- Para calcularmos a correlação:

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

Primeiro, calculamos as médias:

$\overline{X} = \frac{1.11}{5} = \frac{1.11}{5}$	= 0.22
$\overline{Y} = \frac{2.73}{5}$	= 0.55

X	Υ			
0.18	0.46			
0.20	0.70			
0.21	0.41			
0.22	0.44			
0.30	0.72			
Soma=1.11	Soma=2.73			

- Solução:
- Em seguida, calculamos os desvios em relação à média:

	Xi	(X _i -X)	(X _i -X) ²	Yi	(Yi – Y)	(Yi-Y) ²	$(X_i-X)(Yi-Y)$
	0.18	-0.04	0.0016	0.46	-0.09	0.0081	0.0036
	0.20	-0.02	0.0004	0.70	0.15	0.0225	-0.003
	0.21	-0.01	0.0001	0.41	-0.14	0.0196	0.0014
	0.22	0	0	0.44	-0.11	0.0121	0
	0.30	0.08	0.0064	0.72	0.17	0.0289	0.0136
Soma:	1.11	0.01	0.0085	2.73	-0.02	0.0912	0.0156

Então:

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}} = \frac{0.0156}{\sqrt{0.0085} * \sqrt{0.0912}} = \frac{0.0156}{0.092 * 0.31} = 0.55$$

Correlação x Causalidade

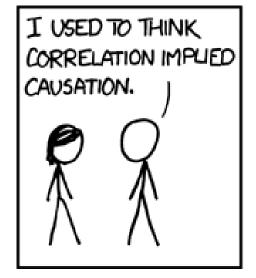
Correlação não é a mesma coisa que causalidade!!

- Na causalidade, uma variável apenas acontece por causa da outra.
- Quando há correlação positiva observamos que duas variáveis costumam andar juntas.
 - Pode ser que Y cause X, ou que X cause Y ou que exista outra variável (omitida) Z que cause as duas coisas...
- Exemplos de correlação e não causalidade:
 - Com o passar do tempo, observamos primeiro o cantar do galo e uns minutos depois o nascer do sol – mas isso não quer dizer que é o cantar do galo que causa o nascer do sol;
 - Pessoas que dormem de sapato acordam com dor de cabeça. Dormir de sapato causa dor de cabeça?
 - Pessoas que dormem tarde tem salários mais elevados. Vou dormir mais tarde hoje para ver se acordo amanhã com o salário mais alto.. ©

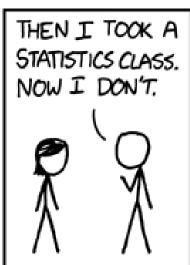
Correlação x Causalidade

Correlação não é a mesma coisa que causalidade!!

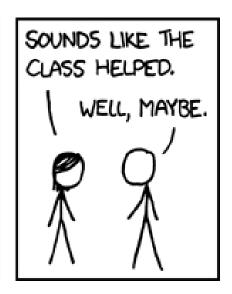
Correlação x Causalidade



- Eu achava que correlação implica causalidade



- Aí eu fiz um curso de estatística e agora não acho mais.



- Parece que o curso ajudou.
- Pode ser.

Resumo

Nesta parte da estatística descritiva, vimos:

- Medidas de tendência central: média, mediana e moda;
- Medidas de variação: amplitude, amplitude interquartil, desviopadrão e variância, o resumo de 5 números e o box-plot.
- Como identificar valores extremos: usando a aplitude interquartil ou o escore-Z.
- Medidas de relação linear entre duas variáveis: a covariância e o coeficiente de correlação.