8

The nonlinear evolution

8.1 Imtroduction

ear perturbation theory developed in chapters 4 and 5 fails when
density contrast becomes nearly unity. Since most of the observed
ures in the nniverse — like galaxies, clusters ete. — have density con-
far in excess of ymity, their siructure ean be understood only by a
-ponlinear theory. This chapter discusses the nonlinear evolution of
urbatlons, starting from where we left off in chapters 4 and 5. Nonlin-

evolution can be studied analytically if some simplifying assumptions
e made. Such simplified apalytic models sre studied n sections 8.2,

‘and S.ﬁ. The resuitk of these calculations are ysed to understand the
perties of the galaxies in sections 8.3, 8.4 and 8.7. Sections 8.8 and
sttempt to provide a more detailed modelling of the properties of spi-
and elliptical galaxies and discuss the difficulties encountered in such
mpts. Finally, section 8.10 reviews the results of N-body sunnlations
in studying noniipear evolution.

8.2 Spherical model for the nonlinear collﬁpse

evolution of density perturbations in the linear regime was analyzed
pters 4 and 5. The fina] resnlt of this analysis was an expression for
processed power apectrum Pk} at # 2 f4... The observed igotropy of
MBR guarantees that the density conirest &, must have been quite
1 (8 55 10~ or so) at this epoch, implying that the evolution of the
ity contrast can be studied using linear theory at £ 2 {4.. and that
grows in proportion 6 the seale factor a(t). At some later time, #5(}),
density contrast at & wavelength A will become comparable to nmity.
t > tg{A), the lineas perturbation theory fails at this wavelength and
e have to study the evelution using some other technignes.

The Fourier transform §(t) of the density contrast #(¢, x) was useful in
o linear regime because each mode waa evolving independently. Since
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274 8§ The nonlinear evolution

thiz is no longer true in the nonlinear imit, there 15 no specific advantage
in using the Fouriar components; it is better to study the evolation of |
(x, t) directly, it the x space.

This may be done as follows: Consider the density conrast 8(x,%;) in
the nmiverse at some time ¢;. This density comtrast will divide the uni-
verde fntoe several averdense (¢ > {) and under dense (& < §) regions, Tt
is reasonable to expect that regions which are significantly overdense will
collapse and (eventually) form gravitationally bound chjects. In these
overdenpe regions, the self-gravity of the local mass concentration will
work agomat the expansion of the universe; i.e., thiz region will expand
at a progressively slower rate compared 1o the background universe. Snch
& slowing down will merease the density contrast between the overdense
region snd the background universe and — consequently — make the grav- .
itational potential of the local mass concentration (in that region) more 3
and more demipant. Eventually, such a region will eollapse under its own
self-gravity and will form a bound system.

The details of the above process will depend on ths initial density
profiie. The simplest model which one can study analyticaliy? is based 3
on the assumption that the overdense region is spherlcally symmetric
(about some point). Let us suppose that the overdense region we are !
interested in has an initial density distribution ;

plr 1) = pu(t:) + Bp(r. £;) = pu(ta)[1 + 8i(r)] (8.1} 4
where §;(v) = 8{r,t;) ia the initial density contrast which is some spec- 3
ified, non-incressing, function of r. Since we are now interested in per-
turbations with A € dg, the size A of the overdense region (which may |
be taken to be the scale over which £ is sigmficant) can be taken o be |
much smaller than the Hubble radius. In this case, we can study the 4
dynamics of this regicn using the Newtonian approximation developed in 4
chapter 4. In the Newtonian limit, it is convenient 1o use the proper radial §
coordinate v = alt)}ix| where x is the comaving Friedmann coordinate. 4
The dynamies of the overdense regicn is determined by the gravitational
patential K

. 1si
Broallr: ) = olr, ) + 860, = =5 (1) o7 + b0, ) .
(8.2) 1
2T -
= —S—G.ﬂbri + b¢fr. 1)
where ¢y, i8 the eguivalent Newtonian potential of the Friedmann metric
(see chapter 4) and 6¢ is the potential generated due to the excess density
fip(r,t). The motion of a thin shell of particles located at a distance r is
governed by the equetion :
&°r Ar Gyt

=z = "v{étrﬁ,al =— 3

GM,  GEM{p 1)
pre - I

r

r—-V(fg) = —

r. {(8.3) §
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writing the second term, we have used the fact that, for a spherically
Ehnmetric density distribution, the gravitational force only depends on
e mase M contained inside the shell, Here My and M (r,t) stand for
47

3 —pult)r? = 4—pb{ﬂa4(t}m = congtant; {8.4)

My =

oMty =dr [ Soar)a® da = Gxps(t) [ fsanda @5

ko simplify the analysis of the problem, we will assume that the spherical
fiells do not cross each other during the evolution. That is, if we initially
kbel the shellsag 1,2, < - - ete. with the radii # < g < r3 .- - ete., then the
ibsequent evolution is assumed to preserve the ordering ry < vp---. In
Mich 5 case the mass contained within a shell of radius r does net change
. th time: &M (v t) = 6M{r,t;) = constant. We can now combine the
e terms in (8.3) to write

dr/dt* = —GM/v?, (8.6)
e

E;_' M= g (et} (L 4F, Bi= (a‘-”;ﬁ) [ st @)

: r; is the initial radius of the shell with mass M and 4§, is the average

pe’ér'-!v ue uf & within »; at time t;. The first integral of equation (8.6) is
per< © 1/dr\? GM
vy S : E) Mg (8.8)

¢ E 18 a constant of integration. The sign of F determines whether

ol in B given mass shell will expand forever or eventually decouple from the
wlial 3 ipansion and collapse. If E > 0, it follows from {8.8) that +? will never
iate, me zero; the shell will expand for ever. On the other hand, if £ < 0
onal 3 n a8 r increases ¥ will eventually become zerc and later negative,

plying a contraction and collapse.

This condition for the collapse of an overdense region can be expressed
YA & more convenient form. To do this, let us consider the terms in (8.8)

(8.2) 3 W the initial instant ¢ = ¢;. It is convenient to choose ¢; to be the time at
i Wrhich § in qmite small so that the overdense region was expanding along

E fiich the backpround. That is, we shell assume that the peculiar velocities

etric § are negligible at ¢ = ¢; {a more genera.l case is studied in exercise 8.1).

nsity f » T = (Gfadr; = H(ti}rs = Hjr; at time i3, and the imtial kinetic

rr i gy will be
' Ki= (f) _Hir (8.9)
(8.3) % 2 /iy, 2
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The potential energy-at ¢ = t; is IV = —|U/| where

.
= Ku4(1 + 8;)

with £2; = {p(t:)/p(t;)) denoting the imitial value of the density param-
eter ( of the smooth background universe. The total energy of the shell

oA dar I
Ul = (—-..) = {F— i ,iz 1481 = —H.? 291'_ 1 -I"'E!'.
| | — 3 pb’(t )r { + 1.} 2 Fi { ] {8. 1{])

i5, therefore,

E = K; — K:Q;(14+8;) = K07 — (1 4+ 8. {8.11)
The condition £ < 0 for the sheli to coflapse (eventually), becomes (1+4;)
=07 ar

>t oa) (812) .

In & closed or flat universe (with £2;! < 1}, this condition is satisfied
by any everdense region with § > 0. In this case, the overdense regions
will always collapse although (as we will see) smaller overdensities will 3
take longer times to turn-around and collapse, In an open universe with §
{}; < 1, the overdensity has to be above a critical value for collapse o
occur. For a general density distribution §;(r), only shells within a critica]
initial radins o, such that &;{re) = Q7' —~1, will be able to eollapse.

Let us now consider a ghell with £ « 0, which expahds to & maximum j
radius 7., and then collapses. The maximum radius p,, which such a ;
shell attains can be easily derived. To do this, note that at the instant of 4
maximim expangion, we have r = 0 giving -

E=-GM/r, = '(Tij‘ff'm}K{ﬂiu +Ei)- (8'13} :

Equating thiz expression for £ with the one in (8.11), we get '
rm (148

(7 -1y .

Clearly, rm 3 r; if 6; 2 (0 1._1); shellg which are only slightly overdense, .

compared to the critical valuc (Q;? ~ 1), will expend much further and ;

 can take & long time to collapse. .

- The time evolution of the shell can be found by integrating the equa-

tions of motion. The solution to equation (8.8), for £ < 0, is given in &
parametric form by i

r=All—cos8), t+7T=DB(@—sinf) A*=CMB® (815 ]
where A and D are constants related to each other as showyn. The pa- 3

rameter § increases with increasing ¢, while r increases to a maximum |
value before decreasing to zero. The constant T allows us to sct the 3

(8.14) -
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condition that at £ = ¢;, r = r;. A shell enclosing mass M and
ially expanding with the background universe will progressively slow
Jti, reach a maximum radjue at § = , “turn-around’ and collapse. The
ek of maximum radius is alao referred to as the epach of ‘turn-aroynd’.
Bilie ‘turn-aronnd’, dr/df — 0 and r = rpp,.

e constants A and B can be determined by using (8.14). At # =

= rm — 2A; comparing with (8.14), we get

_Ti {1+%;)
2 - (@ — 1)
g A% = GM B2, and the expression for M from (8.7} we find B to

(8.16)

_ 1+4;
2HOE — (07 - )32

Bie value of T can be fixed by setting r = v; at £ = {;. As an exampie,
der the case in which the background universe is flat ({3; = 1). Then

8.17)

1+§; 1 1+8)
A_E( T ) B =g o (8.18)
' t = {; we have to satisfy the conditions
ri=-(1+é){1_ B;) (8.18}
2
1 1486 :
L+ T = ( 63"’2 ) — sin#;). (8.20)

.:-uu (Slgj, we Eet, caa&,- -_ (] _31:] (]_ + 61‘.}_1- Sin{:c "51'. is prcﬂti}d
i be guite small, we can approximate this relation as cos#; ~ 1 — 24;,
Pieining 67 = 45;. Substituting in (8.20), we get

H:'(t.i -+ TJ = ;{]’. + &1:}. (&21]

Pr. since Ht; = (2/3) for the {2 = 1 universe, H;T = (2/3)6;. This shows
{T/t:) = & < 1. Hence, we will ignore 7' in what follows. {Similar
usions hoid for models with £}; # 1, as long as §; < 1.) The equa-
fon (8.15), with the constants A and B fixed by (8.16) and (8.17), give
s complete information about how each perturbed mass shell evo]ves.
hese equations can be used to werk out all the charactoristics of a spher-
'perturbat.mn

Cansider, for exampie, the evoluticn of mean density within each mass
. Since M is constant for each mass shell, the mean density within
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a shell is
M
4T A3(1 — cos @3’
In the special case in which the initial density enhancement is homoge-
neons, the average density calculated above is also the actual density. The
density profile of such a constant density sphere is often referred to as the 3
‘top-hat’ profile. To work out the time evolntion of the density conirast
d(r,t), one also needs to know how the background density evolves. In j
the simplest case of a flat universe with k =0, the expansion factor a(t)
and density ps(t) of the background are given by:
1 .
2/3, = _———, . '
aoctt*7; pplt) p—— {8.23) _
Dividing the mean density fr,{) in equation {8.22) by the background i
density, we get the mean density contrast:
Pirt) 3M 6rGB2(f — sin )’
ait) dw A3 (1 —cosg)? '
where we have uged the relation between £ and € given in equation (§.15)
and set T =0. Since 4% = GMB? it foliows that :
_ 9(f —sin8)?
T 2(1-cos8®
The linear evoluticon for the average densjty contrast is recovered in thej
livit of small ¢. In this [imit, we have
362 Bg®

L3 e\
*’"—E(E) '

For a flat universe with £; = 1 and H; = 2/(3t,)

Pt} = (3M/dnr?) = {8.22)

{&.24)-:

=1+08{rt)=

] (8.25)]

& =

s0 that

3t
L)

Using this value for B in (8.27} we find, to the leading order,
' - 3o 122

8= 5151" (t_i) o ﬂ.{tj
This is the correct growth law {$ o £3/3) for the purely growing mode.
the linear regime if the imtial peculiar velocity is zoro; the origin of tig
factor (3/5) is discussed in exercise 8.1. i
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¢ . For the £; =1 model, A and B are given by (8.18). Assuming that §;
. is small compared with unity, and retaining only the leading terms of 3;

22) Ein 4 and B, we can write:

N ' o Ti 3t
VS k. = 2_513 B= 433);2 (83[}]’
The -3 i i

the JE For further discussion, it is convenient to use two other variables r and
rast 3 ¢ fy in place of r; and . The quantity = is the comoving radius: z =

¢ n(to)/a(t;)| corresponding to ry; the parameter 5y is defined sa: §p =
- (m(ta)/o(ts)) (36:/5) = (3/8)6i(1 + 2;). This is the present value of the
§.demsity contrast, as predicted by the linear theory, if the density contrast
8 was §; at the redshift z;. In terms of # and &y, we have:

3x 3332 3,
A=15es B=(3) e (8.31)

:'__ereafter we will omit the overbar on & when no confusion can arise.
giCollecting all our results together, the evelution of & sphenical overdense
ion can be sumrmarized by the following equations:

a,(t}

23) 4
und

24) ]

19)§ r(f) = 2%-“ ~c0s8) = - (1 —cosf), (8.32)
i
1.25) 3 3t; _ N2 s
] t= (0 —sind) = (g) %Tﬂm(a ~smd),  (8.33)
1 t,he i ]
' ey (6 —sinﬂ']2

- density can be expressed in terms of the redshift by using the relation
.}m = (1 + 2:){1 + z)~L. This gives

+ 2z} = G)m mﬁl—(:ﬁn—f;;’?ﬂ = (g) (%)2;3 mﬁ—e‘ﬁﬁ; (8.35)

_ 9 - ain #)?
5= 2L——~—“_ e (8.36)

{'ﬂn an initial density contrast §; at redshift z; these equations define
plicitly) the function 6(z) for z > 2. Equation (8.35) defines ¢ in
of z (imp]icitly), equation (8.36) gives the density contrast at that
. For comparison note that linear evolution gwes the density contrast

_Ef_f_.l_?ﬁi(l—"“’ﬂ..§(§)m T
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We can estimate the accuracy of the linear theory by comparing §(z)
and 8z(z}. To begin with, for z 3 1, we have # < 1 and we get #{z) ~
§p(z). When 8 = (x/2), br = {3fa)(3f4)2f~’-(x;2 1)%/* — 0.341 while

— {9/2){7/2—1)% —1 — 0.466; thus the actual density contrast is about 3
40 per cent higher. When 8 — (27/3),6r = 0.568 and § = 1.01 = 1.

If we interpret § — 1 as the transition peint to nonlinearity, then such
& transition occurs at # = (2% /3}, 61 = 0.57. From (8.35}, we see that ;
this occurs at the redshift {1 + z,)} = 1.066;(1 + %) = (6o/0.57). The ?
next important stage occurs at # = « when the spherical region reaches 3
the maxinmum radius of expansion. From our equations, we find that the |
redshift #mw, the proper radius of the shell v,, and the average density °
contrast §y, at ‘turn-around’ are: 3

8i(1 + 2) b fn e B

(1 +zm}= W =0.57(1 + z}5; = EW % T oRa"
iz
TM_ESE’

= 2
ool m 18 -
{8.38) 4
The first eqgnation gives the redshift at turn-around for a region, param-
etrized by the (bypothetical) hnea.r density contrast fp at the present.3
epoch. If, for example, &; ~ 10~ at 2; = 10%, such a perturbation would
bave turned around at (1 + zm) ~ 5.7 or wh- Zm ~ 4.7. The second

equation gives the maximum radius reached by the perturbation. Thed
third equation shows that the region under consideration is nearly 6 timesy
denser than the background universe, at turp-sround. This correspondsg
to a density contrast of 8, = 4.6 which is definitely in the nonlinear
regime. The linear evolution gives 6, = 1.063 at 6 = .

After the spherical overdense region turns around it will continne tof
contract. Equation (8.34) suggests that at § = 2r all the mass will
collapse to a point. However, long before this happens, the aphroximation
that matter is distributed in spherical sheils and that random velocitied]
of the particles are small, will break doewn. The coilisioniess componen§

of density, viz. the dark mutter, will reach virial ethbnum by a proces '.
known &8 ‘viclent relaxation’, Tlus process arises as follows?: During
collapse there will be large fluctuations jn the gravitational potential, j ﬂ
8 time seale of the order of the free-fall collapse time, by 2= (Gp) 1N
Since the potential is changing with time, individual particles do ng
follow orbits which conserve the energy, Clearly, the change in the energ
of & particle depends in & complex way on its initial position and velocify
but the nei effect will be tp widen the range of energies available to-
particles. Thus, a potential varying in time can provide a relaxatiog
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echahisin for thu particles which operates in a timescale tq,, which is
ch smalley than the two-body-relaxalion time tz. This process has
n termmed ‘viclent relaxation’ (for more details, sce exercise 8.2).

: The ahove process will relax the collisionless (dark matter) component
_-~ 0 a configuration with-radius vyi;, velocity dispersion © and density peon.
g7'The behaviour of thie baryonic component iz a little more complicated
d we will discuss it scparately later.) Snch a viriplized system can be
ed to modo| the structures which we see o the universe. We shall now
imatc the physical parameters of such a system.

.. After vir{alization af the collapsed shell, the potential energy & and
g3he kinetic energy K will be related by 7| = 2K so that the total energy
.,;5 =t 4+ K = —K. At{ =i, all the energy was in the form of potential
fenergy. For a spherically symmetric system with constant density, £ =
¥--3GM?2/5¢r,,. The ‘virial velocity’ v and the ‘virjal radius’ vy, for the
f-.bulla.pﬂing mass ¢an be estimated by the equations:

ity

M2 3G M2 3GM*?
;- K= -& = s |[U] = =—"— =2K = M" 39
- _ = 2 = 5rm 1 | | 51“?11, 2 T (8 )
We get '
) 3 172 :
m- } v={(6GM/5rm) 2 vy = /2. (8.40)
11]'(; ¢ time taken for the fluctuation to reach virial equilibrium, f.on, 18
ud 3

essentially the time corresponding to # = 2x. From equation (8.35), we

[;1: E ﬁnd that the vedshift at callapse, 2., 18

; > ] ﬁi(] o+ 2') 5{]
es _ o g4z . N _ -
ds 3 (A Zoat) = (2m)2/3(3/4)2/3 — 0.368,(1 + 21} = 0.63(1 + 2m) = 22
ar e (8.41)

j: The density ol the collapsed ohject can also be deternined fairly easily.
Since vy, = (rm/2), the mean density of the collapsed object ia peoy =
j- 80 where py, is the density of the object at turn-aronnd. Further,
& o= 8.6py(tm) and pu{te) = {1+ 2m)? (1 + 2con} *ps(fcon). Combining

on - :

o5 fﬁtheae relations, we get

r;: S oo = 20~ 44.85(En) = 1T0py(Feon) = 170p0(1 + 2ecn)®  (8.42)
he where py is the present cosmological density. Thir result determines pean

P in terms of the redshift of formation of a bound object (sec figure 8.1).
g (For comparison. it may be noted that linear theory predicts 87 = 1.686
£ at # = 27.) Once the system has virialized, its density and size do not
i change. Since b a3, the density contrast § increascs as a2 for ¢ > feoy.
. Let us now consider the collapse of the baryonic component, for which
¥ & gimilar regult holds. During the collapse, the gaseous mixture of hy-
- drogen and helivm develops shocks and gets reheated to a temperaturc

e
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o 8=ty b=x 8=2x

- mmk———#&«— NON-LINEAR —————————

{

"BOUND .
| STRUCTURES

{TLTRN

1
ARGUNG \ }

DENSITY ——

!
187 lee | s
qlll - 16 je— A
) Tonpx G|
EXFANSION FACTOR — =

Fig. 8.1. This figure shows the growth of density in a spherical over-dense region.
The lower curve shows the evolution of the background density in & matter- |
dominated case. The upper curve is the density of the spherical inhomogeneity. 1
In the linear region, the contrast grows ag 8. Joce the nonlinear stage is reached,
the spherical region collapaes faster, virializes and forms a hound structure. The |
density of the bound structure remains constant thereafter. [

at which pressure balance can prevent firther collapse. At thia stage the
thermal energy will be comparable to the pravitational potentis! energy:
The temperature of the gas, Ty, 19 related to the velocity dispersion u’v
by 30gasTeir /21t = Pgast /2, where pges is the gas density and u is ita
mesn molecular weight. This gives T\, = uv?/3. It is useful to express}
the ahove results with typical numbers for the various quantities shov -
explicitly. If the He fraction is Y by weight and the gas is fully ionizedg}
then

{mpng + Mpenns) mpu ( 1+Y ) —
= = — == -'5? L]
(2nm + Ing.) 2 \1Fo3my,  O87mH

if Y = 0.25. Apert from the cosmological parameters, two paramete
’ need to beg specified. These may be chosen to be the mass M of the oven
! dense region and the redshift of formation z..y. Using the cosmologicsl
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po = 1.8% x 107 ?0Kh%Z gem ™3,

- o= 0.92(2h%) T H3(M /101 Mg/ Mpe, (8.44)
£y = 0.65 x 10% 1 yr.

8g = 1.688(1 + 2011, we find

o =280+ zoo) ! (pmgr) Mo ke
= 43485 hg 2% MI{? kpe,

M 1)"3
v = 100{1 4+ Zeen)*/* (—'-“-"') hs's kms™

1M2M {8.45)
= 77632 MIf® b/ Jem
M 2/3
- 5 2/3
T\"il’ = 2-32 = 10 (1 + Zl:o]_l) (m) hﬂ.ﬁ K
- = 1.36 x 10560 Ma4° hals K.
o note that _

egion. tooll = o1 + 2eatt) "% (14 2m) = 1.5 + Zoon)- (8.46)
1atter- 4 - .
;:mit}r_'.: ge expressions use hg s, the Hubble constant in nnits of 50kms— 1M
ached, 1; we have also set ! = 1. The above results can be used to estimate

Ethe typical parameters of collapsed objects otice we are given M and the
Sfiepse redshift. For example, if objects with M = 1012 Mg (which is
rpical of galaxies) collapse at a redshift of, say 2, then one gets ry;;

kpe, toon = 1.2 % 10% yr, v 173]{11'13_1, Toir &= T x 1P K. The density

e. The3

\ge ’t-hﬁ:.

sutrast of the galaxy at present will be (poon/po) & 170(1 + zeon)® =
mergy-} x 10°.
sion ©° § These values are broadly in agreement with the parameters which one
s is it5 ciates with a galactic halo. The linear evolution, studied in chapter

pombined with the spherical collapse model diseussed above, seems to
capable of producing structures of the correct magnitude. The virial
us of the baryonic content of the galaxy will be mmch smaller hecauge
oms can cool by radiative processes and contract further. This will
p digcussed in section B.3.

he equation (8.33) also provides a relation we needed in chapter 5.
¢ time of formation of a bound structure (£, ) is related to the density
ontrast §; at an earlier time &; by f.on o £;8; 32 That is, the minimum
pT1S tj' contrast needed at time ti for a bound structure to form at ¢ E
scales 88 (8;)min X (£i/tcon) /3. This result was used in chapter 5.

axpress)
shown §
onized,

{5.43}:

ametersd
he over-}
wlogical 3
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The spherical top-hat model can be used to estimate nonlinear density
contrast in the following way: We start with some debrity contrast §; 4 Foof
at z;, and compute the density contrast fy at present using the linear 2
theory to be &g = (3/5)8:(1+ 2;). The actual density contrast, of course,
will be higher and can be calculated a8 follows: (1) If §p < 1.063, then
wi con find a H(ﬁn) in the range 0 < # < 7 by inverting the relation
(8.37): o = (3/5)(3/4)2/3(# — sin#)>/®. The correct density comtrast
can pow be obtained from (8.36) using this value of 8(8y). (2} If do >
1.686, then our analyzsis shows that a bound structure wounld have already
formed at {1 + zco.lg = (§p/1.686) with the demsity p.on = 170p0{1 +
Zean)? = (170/1.686")p088 = 35.5p083. The correct density contrast is,
therefore, § = (pean/po} — 1 = 35.56% — 1. (3) For 1.063 < &y < 1.686, the
spherical collapse model ia a bad approximation and ecannot be used to
maké refiable predictions. The actual density contrast inereases by two
orders of magnitude during this interval.

We end this section by mentioming an extremcy simple general rela-
timstic solution which describes the evolution of a spherical inhomogene-
ity in the Friedmann universe (see cxercige 8.3). It turns out? that such
a situation can be described by a metric of the form

dmz
1— kfz)z? [

@21 a2 o
- z°(df” 4 sin 8 dp%)| (8.47)

ds? = dt? — a*(z, i) ”

where a(x,t) is a spare dependent ‘expansion factor’, and k(1) Is a space
dependent curvature constant. The metric can be written in the above
form as long a8 masa shells at different values of £ do not cross ; a condi-
tion which will be satisfied by density distributicns in which g decreases
monotonically with z. The Einstein equations determiuming the time eve-  J

ution of the expansion factor ez, ) and the matter density p(z,t} turn
out o be: '
i +kley € 8xGplz,t) (az)
ot T e T 3 i _

where C is & constant. Here (8.48) is actually two- equations, one giving

the evolution of e and the other that of p. If p, and hence @ and k, are |

independent of x these equations reduce to the standard equations for a
Friedmann universe. '
This simple generalization of the homogenecus universe mode| offers
considerable ingight into the way a spherical overdense {or underdense)
region behaves. Equation (8.48) shows that the behavicur of a masa shell
at a comoving radius = is completely specified by the isce! value of the 3
curvature constant £. If at some x, k{(z) <.0, the corresponding mass
shell will expand for ever, while if k{z} > 0, it will turn around at some §
stage and collapse. . .

(8.48)
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¥e are now in a position to understand the evolution of different types
apherical density perturbations that may anse in the Friedmann uni-
e. Congider the case when k(x) is positive for z < =0 , is Zero at
‘gid tends to B eonstant negatyve value, say —1, far away from the
.. One way of realizing such a gituation is to embed a density hill
ved mround the origin in an open Friedmann umverse and start off
wniverse expanding uniformly. Fromn the evolution equasion (8.48) we
n-infer that the region 2 < zqn will eventually collapse, while the region
# 2 will expand for ever. Here we see quite clearly that condensation
1% local part of the universe does not alter the global behaviour of an
Friedmann universe. Siinilarly one can construct expanding voids
-acloged universe. In this case, one demiands that k(x) < 0 for = < %o
gy) and positive elsewhere. This situation can be realized if there is a
enough density valley in a closed universe. The region within g
keep on expanding, whereas the region outside wil] initially expand
a slower rate and eventually recollapse.

g ¥ oA B R AW
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8.3 Scaling laws

single overdente region in an otherwise smooth universe. To madel the
fitructure formation correctly, we need to find the full power spectrum of
¥ bound objects which are formed due to the nonlinear collapse. This is
conmderably miore difficult task in which only limited suceess has been

B

*-The mass function of the bound oh,]ccts can be caleulated in & fa.nrl}r
itrajghtforward nanner, once a choice is made for the filtering funetion.
k {This was discussed in chapter 5.) While this is adequate for some pur-
f:poses, it does not provide a dynamical picture of the collapse. Semewhat
L 'more detaited modelling is possible if the form of the power spectrum at
bt = tgec 18 known. The further evolution depends erucially on whether
f-the dark matter is cold or hot. Different kinds of anatytic approximations
piare needed for the two cases. We shall first consider the case of cold dark
3 matter. The approximate analysis of the hot dark matter will be taken
%-i1p in sections 8,5 and 8.6.

i - We saw in chapter 5 that the density inhomogeneity can be character-
; “iged by & Gaussjan distribution with some variance, o, which is related

$YEF8 8

TE

S 16 the power spectrum of the fluctuations. Lahe}]mg the fluctuatiens by
0} - othe mass M oc A® o k3, we can relate the mean square fluctuation in
ell .'*the masa {0 the varisnce of the Gaunssian ag,
he '

M) =< (SM/M)? »= CM—Brn)/3 (8.49)

g whe.re n i8 the index of the power spectrum (with P{k) ox k"} and C is
j..the normalization constant which should be fixed by comparison witl: the

o o oD R SE - R R
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obgervations. Since P(k) ia not a strict power law, n should be thought
of a8 an approximate local value d{ln P)/d(ln k) i the relevant range.
The quantity (M) was interpreted in chapter 5 as the typical {excess)
mass contrast. at some scale B x M1/3. Since (6M /M) o [(6p)RY/pp RP]
o (6p/ps), we can take the quantity a{M ) to be proportional to the aver-
nge density contrast § inside a region of radius R which was the parameter
used in the lagt section. More generally, we can set § = v to describe
a gpherical region with density countrast which is ¥ times the standard
deviatjon. Using this expression in (8.49) we can express all the physical
quantities in terms of the mass of the overdense region. We then findi
the following scalings: teon oc =MW, o o BN —InH8)2, Lo o
Top X 1M[“+5]fﬁ, v oo 1 2ME-RIN2 T o p MRS, The s&mﬂ;
scalings have been obtained from simpler dimensjonal arguments and thej
linear theory in chapter 5. But only a detailed model can provide us W1
the constants of proporticnality appearing in these relations, ;
For n > -3, the variance # decreascs with increasing M; then th'
scaling t.qy oc M +3)/% ghows that, on the average, smaller masses t
around and collapse earlier than larger masses. Structures grow by the
gradual separation and recollapse of progressively larger units. As cacl
unit condenses obt, it will in general be made up of a numher of smalleg
condensations which had collapsed earlier. This leads to a heirarchice
pattern of clustering.
When a larger mass callupses, its substructure is jikely to be erased
rapidly by the mergers and tidal dmptlﬂﬂ of its subumts, providey
the specific binding energy (GM /ryu) o v? increases with M. & ey
v oc MU-™N2) thig happens for n < 1. In this case, the evolution g
structure will be self-similar in time with » characteristic mass Maif
which grows with time as M,(t) o £4/("+3}, For masses much larg
than M_(t), the fluctuations will still he in the Linear regime; cn 3cal
comparable to A:{f) strueture will be turning around and collapsif
and will show a heirarchical patiern; while on mass scales much sms
tharn M (t), the giructure would have been smoothed ouf by nonlined
relaxation effecis, "
It should be strezged that the processed spectrum at £ = f.. I8 1
a pure power law. So the scaling laws derived above can cnly be g
phed piecewise, over mass intervals in which P(k) can be approximad
(locally) as a power law. In the cold dark matter models n & ~3
small Af, increases with increasing M and reaches the asymptotic vak
of n =1 for M Z 10" Mg. The power spectrum on galactic scales of
be approximated by n = —2. In this case, one sees from the relaty
v o M377/12 that M o« v*. This relation connects the fotal o
of the gystem with the velority dispersion in the gravitationa] poteng
produced by this mass. If we assume that the total mass is proportiof
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tht 3 t,u the luminosity L of the system and that the velocity dispersion is of
. 3 b the same order as the rotations] velocity & of visible chjects (stars, pas,
B8] .etc.) in this potential, it follows that L = ¢*. This was one of the
Raj :: p relations nsed in chapter 7 to estimate the distances to the galaxies.

Bl- b

der 4 8.4 The masses of galaxles

ibe 3 :

'Ga.laxles have typical masses of about 101 M. Theories for galaxy for-
X matmn based purely on the gravitationsal inatability of density Huctua-
k tions do not provide any natural explanation for this characteristic mass.
¥4t is, therefore, necessary to understand the extra physical considerations
" S which lead to this characteristic mass scale.
qe s .. To begin with, it should be ncted that the part of a galaxy which is
4 rectly accessible to observations is the baryonic part, though the grav-
ationally dominant part may be the dark matter. The dynamics of the
yonic part can be properly described® only if the cooling mechanisms
the gas is also taken into account. Consider a gas cloud of mass M
radins K. which is Suppurted againgt gravitational collapse by gas
esaure. To provide this support, the gas should have a temperature T
here 7' = {uv? [3) = (u/36GM /10r,) ~ (GMp/5R) if we identify the
ial radius 7, with R. Becanse of this rather high temperature, the gas
I -be radiating energy and cooling. Once the temperature changes due
cooling, the delicate balance between gravity and pressure support can
affected. The evolution of such a ¢loud will depend crucially on the

ative valucs of the cooling timescale,

nee E 35T
a of 3 tool = — &2 8.50
(1) 4 @ = F ¥ 2uA(T) (8.50)
rger § the dynamiesl timescale
wles ¥

3 T [2GM "2 n U2

ging 3 t == =5 x 107 ( ) : 51
aller 3 dynmz[ K3 ] x 10° yr 1cm—2 (85}

£ is the average baryeric density and A{T) gives the cooling rate of
g£8s at temperature T'. Note that we have taken tay, to be the freefall
me of a uniform density sphere of radius &.

There are three possibilities which should be distinguished ss regards
¢'evolution of such a clond. Firstly, if fe0! 18 greater than the Hohble
, H71 then the cloud could not have evolved much since its for-
on, On the other hand, if H=! > feool > fayn, the gas can cool;
8% it cools the cloud can retain the pressure support by adjusting
pressure distribution. In this case the collapse of the cloud will be

mass aai-static ont & timescale of order o Finelly there is the possibility
naal tonol < fdyn- In this case the clond will cool rapidly {relative to
ynamical tirnescale) to a minimum temperature. This will lead to
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the loss of pressure support and the gas will undergo an almost freefall
collapse. Fragmentation into smaller units can pow oceur hecause, as
the collapse proceeds isothermally, smallor and smaller mass scales will
become gravitationally nnstable.

The criterion uyar < dyn can determine the masses of galaxies, Only
when thig condition js satisfied can a gravitating gas clond collapse ap-
preciably and fragment into stars. Forther, in any bairarchical theory of |
galaxy formation, unless a gas cloud cools within a dynamical timescale 3
and hecomes appreciably bound, collapse on & larger scale will disrupt §
it. In these theories, galaxies are the first struetures which have resisted
such disruption by being able to satisfy the above criteryon. 7

Let us frst examine this model without introducing any dark mat- -
ter. The cooling of primordial gas i8 mainly due to threc procesmes: 4
bremsstrahfung, recombinations in the hydrogen—hehum plasma and
Compton scattering of hot electrons by the ¢older cosmic background
photons. As discussed in chapter §, Comptun cooling is inportant only 4
at, tedshifts higher that, z ~ & or =0. Since galaxy scales become nonlinear 3
only at 2 5 10 we can ignore the Complen sooling. The cooling rate of §
the gas due to bremsstrahlung and recombinagion can then be written 3

ags

MT) = (ApT? + ART 1) (8.52)§

where the Ag o {¢8n? T2 /m3/?) term represents the cooling due to3
bremsstrahlung and the Ag ~ e*mAg term arises from the cooling duej
to recombination. (The temperature dependence of both these processes§
wes discussed in chapter 1.) This expression is valid for temperatures]
above 104 K; for lower temperatures, the cooling rate drops drastically;
since hydrogen can no longer be significantly wnized by coilisions. Intre.
duacing the numerical values appropriate for a hydrogen-helinm plasmisg
{with a helinm abimdance V' = 0.25 and some admjxture of metals) the]
expregaion for i...; becomes

-1 —1/2 Y
_8x1Purf T
oot =8 10 jr{lm_s) [(mﬁK) +1,5fm(mﬁK) ]
(.

Here n is the umber density of gas particles and the factor f,, takef
into account the possibility that the gas may be enriched with metals :-‘-'
fm == 1 when there are nc metals and f,, = 30 for solar abundance. df
metals, For gas with pritnordial abundance { fn = 1), coe can see from
(5.58} that therc is a transition temperature T = 16K, For 7 > 73
bremsstrahlung dominates while for T' < T*, the line cooling dominees

Let us pow comsider the ratic v = {foo01/tqyn). The condition T =4
defines a curve on the p-T space, which demarcates the region of param
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eter epace in whieh cogling cccurs rapidly within a dynamical time, from
the region of weak cooling (see figure 8.2).

For T < T*, when line cooling is dominant, we have e o (T3/2/p)
and 14y x o~ 12 giving 7 o (T92/p4/3) oc M; hence the 7 = 1
curve will he paralle] to the lines of constant mess in the p — 7' plane.
Snbstituting the numbers and using the expression for the cooling time
from (8.53) we find that r = 1 implies f(T/108K)3/2(nfem~3)~1/2 —
4.28. Expressing the mass of the cloud as M = (5RT/Gu) = 2.1 x
101! Mo (T/10° K¥*/%(n /em=3)~1/2 we can write

_ bocel M
Y ETIESY
if ¢ = 0.57 apd f = 1. Thus the criterion for efficient cooling can he

satisfied for masses below a critical mass of abont 1012 Mg, provided
T < 10°K.

(8.54)
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':_ Fig. 8.2, Diagram showing the regions in which various cooling processes can be
. efficient. The thick liné is obtained hy equating the timescale for cooling with the
¥ free-fall timescale. The top part of the curve i4 dominated by ihe bremsstrahlung
process while the left end of the curve is contributed by the line cooling of the
g ionized gas. {The exact shape of the curve depends on the composition of the
= gas and the amount of meials present.} The thick breken line on the top portion
- is obtained by equeting cooling time to the Hubble time. Similarly the vertical
- ‘chaded line is obtained by equating free-fall time and with Hubble time. Also
2 - marked for reference are the lines of constant mass and constant radius,
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On the other hand, for T > 7", when bremsstraling dominates the
cooling process, tegar o (T2 /) and tayn x p=12 Sorx (Tlﬁfplﬂj o
R, and the curve T = 1 will be paraliel to the lines of constant radius in the
p-T space. We now find that 7 = 1 implies (T/10% K)'/% (n/em—3) —
6.43. Expressing the radius of the elond as B = (GMp/5T) = 13kpe
(T/10° K3V 2 (nefom= )12 we get, i

tenol R
= = . £.55) 4
T tayn  BOkpe (8.55) §

Therefore, elonds with high temperature (' > 7} have to shrink below
a critieal radius of about 10% kpc before being able to ceol efficiently to
form galaxies. :
These features arc illustrated schematically in figure 8.2 which ia usu-
ally called a ‘coching diagram’. The p-T space is divided into three
regimes A, B and C. A gar cloud with constant mass evolves roughly
along lines of constant M, with T x pl/3, if it is pressure supported. 3
Gas clouds in region A have fene > tubble and cool very little. Those in
region B cool slowly and undergo quasi-siatie collapse, with the pressure
balancing gravity at each instant, until they enter the region C where-'f
r < 1. Gas clouds in C ean cool officiently to form galaxies because they |
have masses below 107? Mg, or radius below 102 kpe. These masses and |
radii compare well with the scales characteristic of galaxies. 3
Let us now consider the effects of including the dark matter component. ;
The dynamical tinescale is now determined by the total density of dark 3
matter and baryons, wheress the cooling time still depends only on the
density of the baryonic gas. 1n this ease, the gas will not be at the virial 3
temperature initially. It is only during collapse that the gas gets heated
up by shocks prodiced when different hits of gas run inte each other. 3
If the cooling timescale of the shocked gas is larger than the dynamical
timeseale in which the cloud settles down to su equilibrium, then the gas;
will eventually get heated up to the virtal temperature. On the ovher j
hand, if the cooling time was shorter, the gas may never reach such a
pressure supported cquilibrium. Efficient cooling will result in the gas{
sinking to the centre of the dark matter potential well which is being |
formned, until halted by rotation or fragmentation into stars. i
Clearly, it is again the ratio of the ccoling time to the dynamical time of |
the object which governs the evolution. Further, notice that smaller mass
clumps are disrupted ss larger masscs tura around and coliapse. However, §
if the gas component can cool cfficiently encugh it may shrink snfficiently g
close to the centre of the dark matter potentisl and thus resist further
disruption. This process will break the hierarchy. (Galaxies conld be, §
again, thought of as the first structures that have survived the digruption 3
due to heirarchiesl clv.wering. ;
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i The spherical model can be used to estimate the relevant dynamical
k. timescale. We assume 4y, to be comparable to (£oay/2), the time taken
g for a spherical top-hat fluctuation to collapse after turning around. This
. expression i8 the same as the tq,, given in (8.51} above;, provided we
ldenmfy - in {8.51) with the radius of turn-around r.. Then

-1/2 a2
p tmﬁt?ml.ﬁxlﬁg (-——M—) ( e ) yr. (8.56)

012 M, 200 kpc

Fur estimating the cooling timescale, we use (8.53) and assume that

> the gas makes up a fraction F of the total mass and is uniformly dis-

4 ¢ tributed within a radius rm /2. The gas temperature js taken to be of

order the \nnal tempemture cbtained m the spherical model; that is,
% Toir = {pv? /3), where v ~ (6GM /57, ). This corresponds to the tem-
. perature achieved by heating by shocks which have a velocity of order of

;-_ ' : the virial w,lomty In that case,

Fay-l M 1/2 , 2/2
9 m
tcoal 2.4 x 10°f, (0 1) (—-—-—1012 MO) (—_2001{11 ) yr. {8.57)

3_ Wﬁ have assumed that the line cooling dominates at the temperature
BT == T relevant to the galaxies, and adopted a typical value of F =~ 0.1.
2 Note that the collapse, in general, is Likely to be highly inhomogeneons
g and the above estimates are only supposed to give a rough idea of the

.;. - numbers involved. From the last two equations we get

tool _ (F )‘1( M )
- — B 1 — 52
4 (td}rn) *1a\o1) \oemg (8.58)

'!Bﬂ that efficient cooling (with T < 1) requires

0.1

It is clear that masses of order of galactlc masses are again picked out
prefereut;a,lly even when the dark matter is included.
' The procedure ontlined above can be used to analyze any particular
eory of structture formation invo]ving heirarchical elustexing. The start-
Liig point will be the cooling disgram, in which the = 1 curve is plotted.
% Given the power spectram of density fluctuations, one can work ont den-
g&t}'f contrast at various scales 8y = ya{M). Then the varions properties,
p and T of the collapsed objects which are formed, can be estimated
ing the spherical model. We saw that these propertles depend only on
pyne parameter M, once the densjty contrast &g 1s fixed. Thus, for cach
yalue of v Gne geta a curve on the p-T plane, giving the properties of col-
psed objects, These curves assume that the proto-condensations have
ialized, but that the gas has not-cooled and condensed. Cocling moves

F
M{Mﬂnmﬁ4x lﬂllmgfm (""‘) Bﬁg]
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points on these curves to higher densities. In the same disgram onc can
also plot, for comparizon, the obwerved positions of gelaxies, groups and 3
clnsters of galaxies. i

A simplified form of such a cocling diagram, for a particular version of J
cold dark matter theory”, is given in figure 8.3. This figure syggests that, 3
while galaxies show evidence for having cooled and condensed within their
dark halos, gronps and clusters of galaxics have +00 long & cooling time
to haye dissipated mwuch of their energy. From the diagram onc can also
see that gas clouds with mags in the range of 10° Mg < M < 1012 Mg |

I 1w
g 1wk
Il
8
é 10
T il

lﬂ'i —

S | [ { { [ [
10° jol? o' 102 1 1 (L
(MMg) ——

Fig. 8.3. The cooling curve of the previous figure is redrawn using different vari-|
ables, The y-axis correaponds to the gravitational potential energy per particled
and the w-axis, the mess. (These were the variables used in chapter 1). Thej
alanted, shaded, line corresponds to the ine Hyte = 1. Obje::ts to the right oft
(8nd below) this line cannot collapse within the age of the universe, The thick]
line in the middle is the cocling eurve obtained by topq = £ Obiects to the
left of (and above) this curve can coo] efficiently while the objects to the right]
of this curve cannot. The doted curve on the right delipeates the regions whichy
can eool efficiently within the Hubble time. Also shown is a thin straight lin)
obtained by equating the Compton cooling time and the freefall time, Typical]
locations of clusters and different kinds of galaxies are indicated. Also shown are
the lincs of constant radii and constant density.
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coo! within the dynamical tithescale. The lower limit comes from
i fact that the cooling rate drops drastically below about 10% K, when
yilrogen can no longer be significantty ionized by collisions.
“Bore complicating features which affect the above simple ideas deserve
tion. Firstly, note that we have ignored the formation of stars and
feedback of this process on the gsa. If the star formation is very
ent, the mupernovae from the massive atars may provide an important
t input. [t may even drive out the gas if the potential well is shallow
iigh®. In fact, such effects may be crucial in preventing all the baryons
being locked up in small ohjects, before typical galaxies form. Alse,
see from (R.58) that if the gas were enriched with metals, much larger
5 can ¢ool within a dynamical time becanse of the increased cooling
g S0 the chemical history of the gas could be important.
sbinally, we discuss the effect of Compton eooling, which has been ig-
ed so fmr. The copling rate of a gas with electrom density m. and
perature T embedded in a blackbody radiation ficld of demsity pg
temperature T, is given by (see chapter 6)

W oW

dorn.pplT - T¢
ﬁ{?omp = 4 Bp:; 1 .

ooling time for matter, due to inverse Compton scattering off tle
nic background photons, will be therefore,

3mpyme(1 + z)™4
_ Burrilnp.
hre we have assumed that T 3 T, and used pg(z) = flrpc(1+ 2)* to

to account, the expansion of the universe. Comparing feiomp with
dynamical time in (8.56) we get

(8.60)

tComp = 12,1 x 10M3(1 4 2) % yr. (8.61)

Tomp = T22B 22 X 102(1 + zeon)) ™2, (8.62)
tayn :
atio iz less than unity for 2z, > 7, independent of the maas of the
paing object. So Compton cooling can efficiently eool an object only
apses at a redshift higher than z ~ 10, whatcver its mass. ft is not
hether galaxien can collapse that early; but if they do, then galaxy
es cannot be preferentially picked out through the cooling processes
flined ahove. An interesting feature emerges if one plots the the line
= 1 in the cooling diagram (see figure 8.3). Note that this line is
lel to the lines of constant density. Galaxies and clusters are neatly
Erated by the Compton cooling line, suggesting that galuxy formation
ed when Compton cooling became inefficient. If galaxies could form
than & redehift of z = 10, then the above fact could provide a
for their characteristic masses, which is quite different from the
filiscussed earlier.
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8.5 Zeldovich approximation

The analyais so far was based on the asgumption of spherical symmetry
and used the power spectrum of the cold dark matter models in which
smaller masses become nonlinear first. The evolurion, however, will he &
different if the power spectrum i8 that produced in a universe dominated 3
by hot dark matter. I was shown in chapter 4 that the power spectrina
for hot dark matter is peaked at a mass scale of about Mpy = 101 Mg. ;
Therefore, the first structures which form due to noniinearity will afl 4
have magses around this value. There will be very little power on small
scales. To analyze this scenano, it is preferable to use a different kind of §
apbroxiation. ]
Such an approximation, proposed by Zeldovich®, is possible for scales :
which are much smaller than dg where Newtonian analysis is possible. 3
The starting poiut of the Zeldovich approximation is the result from the
linear thoory for the growth of small perturhations, expressed as & redation §
between the Fulerian and Lagrangian co-ordinates of the particles. 1n a3
simooth universe with uniform density pp(¢], the actual position of any{
particle r{f), is related to iis initial {Lagrangian) location g by 3

r{f) = a(t)q.

Thig result, of course, is altered in the presence of growing density per-'
turbaticns. In the linear regime, the only modification needed is the]
addition of a separable funiction of ¢+ and q of the form, say, (t}p[q :
a(t)b{t)pla). Thay is, we can take ;

r(t} = a(t)x(t) = a{t){a + b(tIp(Q)] (8.64}

where x(?} is the comoving Eulerian coordinate. This equation gives the
comoving position (x} and proper position (r) of a particle at time &
given that at some time in the past it had the comoving position g. T4
demonstrate that this equation correctly describes the linear evolntios
let, us caloulate how the perturbed demsity evolves when the individis
particles move according to (8.64). ¥ the initial, unperturbed, density 3
7 {which is independent of q), then the conservation of msass implies thy
the perturbed density will be 4

plr, 1) 8 = pdPq. |

{8.63]3

Therefore

e polt)

Alit) = a0, = do(0%, B~ SorlE; T BN Fm; TOa A
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ghere we have set ga(t) = [5/a®(¢)]. Expanding the Jacobian to the first
Foo der in tlhe pgrt.urbﬂtiﬂll b{t}p{q], we gef,

dp _lp—m) _
; = B(£) Ve - p- (8.67)

I .thE other hand, #he linear theory predicts that
dp .- .
. f(x, t) = g(t}éa(x) = g(t} > - Avexp{ik - [q + b{t:)p{q)]}  (8.68)
X

here g(t) is the function describing the time evolution of the growing

de of the demsity contrast and A, is the Fourier transform of the
itial density comtrast, &;. For the @ = 1 universe, for example, g(t) =
})¢t/E:)2/7. Let us choose the initial moment £; such that the term
)p is nogligible compared to q. Then, if we identify b(t) with g(t) and

ik L
pla) =3 ;7 Ak exp(ik - a), (8.69)
k
sec that the approximation given by the relation (8.64) correctly re-
duces the result of the linear theory for the growth of small density
urbations. Thus, the relation (8.64) is defimitely correct in the linear
OEimetion.

m the definition of p{q) given in {8.69), one has

P(a) = VoPofq) {8.70)
Bo(q) =5 .‘i‘“’xi{ﬂ_f—km‘ (8.71)

relation allows one to obtain a simple physical interpretation for
q) and p(q). Note that

vq p= VZ(I’[] = Z Ak exp(‘:k . QJ = —% {8.?2]
k .

ng the Einstein equation & = —{47Gpya) /3. we can write this cquation

47Ga(p - )

equation for the gravitational potential ¢ im the perturbed universe

Vigg = {8.73)

Vi = 4rCa’® (p — pp)- (B.74)
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Comparing these two expressions at an early epoch {say, at ¢ =1;) when
X is very ncarly equal to g, we pet:

& = 30bitdp. ~ [8.75)

Thus &y is proportional to the gravitational potential of the linear theory
and p{q) i8 proportional to the pecnliar veloeity field of the linear theory.
Zeldovich suggested that while (8.64) is in accordance with the linear
theory, it may also provide & good approximate description of the cvoln-
tion of densty perturbations in the nonlinear regime where §p/p greatly
exceeds unity. To study the consequénces of this hypothesis, it is best
to proceed as follows: Since plq) is a gradiens of 4 scalar function, the :
Jacobian in (8.66) is a real symmetric matrix, This matrix can be diago- §
nalized at every point q, to yield a set of cigenvalues and principal axes
a8 u function of q. If the eigenvalues of {(p;/0q:) are [—A1{q). —Xa(q), {
—A3{q)] then the penurbed density is given by

£u{t)
B = T (@) — bl — bty

where g can be expressed as a function of r by solving (8.64). This expres- 3
gion degeribes the effect of deformation of an infinitesimal, cubical volume - :'
{with the faces of the cube determined by the sigenvectors corresponding
t0 Ay) abd the conscquent change yn the density, For a growing perturba- §
tion, b(t) incroases with time; therefore, a positive A denotes collapse and
negative A signals expansion. In sn overdense region the dewsity will be-
come infinite if one of the terms in brackets in the denominator of (8.76) §
becomias zera. I the generic case, these cigenvalues will be different from 3
each other: let Ay > Az = Aa. At any particular value of g one of them, 3
say A, will be maximum. Then the density will diverge for the first time 3
when (1 — b(¢)Ay) = 0; a¢ this insgant the material contained in a cube iny
the ¢ space gets compregsed to & sheet in the r space, along the principal §
axig correspunding ¢o A;. Thus sheetlike structures, or ‘pancakes’, will§
be the first nonlinear structures to form when pravitational instability3
amplifies density perturbations: g

Notice that the description uses trajectories which are built out ofj
the linear theory. Such a description, of course, eannot be exact. ToJ
understand the nature of the approximation, we may proeceed as fuﬂm'm
Given the acceleration field X, we ean compute the densicy d1btr1butmn

P as

Vi - % = —47Cp, (8. "

provided the potential producing the aoceieratmn (X = —Véae) I8 t £
salhe as the potential geuerated by the density (V3¢n = 4nGp). For thel
exart trajectories, equation (8.77) will be an identity; for the approximaté




