Lista de exercícios Aula 14 – Álgebra de Transformações Álgebra Linear

Prof. Elton Carvalho − ECT − UFRN

Questionário: Terça-feira 14/12/2021 Aula síncrona: Quinta-feira 16/12/2021

- 1. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x 2y, z, x + y). Mostre que T é um isomorfismo e calcule sua inversa T^{-1} . (Boldrini 5.3.12)
- 2. Dados $T:U\to V$ linear e injetora e $u_1, u_2, ..., u_k$ vetores LI em U, mostre que $\{T(u_1), T(u_2), ..., T(u_k)\}$ é LI.
- 3. Sejam $F: \mathbb{R}^3 \to \mathbb{R}^2$ e $G: \mathbb{R}^3 \to \mathbb{R}^2$ transformações lineares definidas por F(x,y,z) = (x+y,z) e G(x,y,z) = (x,y-z). Determine as seguintes transformações lineares de \mathbb{R}^3 em \mathbb{R}^2 :
 - (a) F + G
 - (b) 2F 3G
- 4. Considere $F, G \in L(\mathbb{R}^2)$ dados por F(x, y) = (x y, x) e G(x, y) = (x, 0). Determine:
 - (a) 2F + 3G

(d) F^2

(b) $F \circ G$

(e) G^2

(c) $G \circ F$

- (f) G^3
- 5. Seja $B = \{e_1, e_2, e_3\}$ base canônica do \mathbb{R}^3 . Se $F \in L(\mathbb{R}^3)$ é o operador tal que $F(e_1) = e_2$, $F(e_2) = e_3$, $F(e_3) = e_1$,
 - (a) determine F(x, y, z)
 - (b) e mostre que $F^3 = \mathbb{I}$ e, portanto, $F^2 = F^{-1}$. (Nota: \mathbb{I} é o operador identidade: $\mathbb{I}(v) = v$)
- 6. Sejam $F \in L(\mathbb{R}^3, \mathbb{R}^2)$ e $G \in L(\mathbb{R}^2, \mathbb{R}^3)$ dados respectivamente por F(x, y, z) = (x y, y z) e G(x, y) = (x y, y x, x + y). Sendo \mathbb{I} o operador idêntico do \mathbb{R}^3 , verifique se $G \circ F + \mathbb{I}$ é um automorfismo do \mathbb{R}^3 . Se for, determine o automorfismo inverso. (Sugestão: qual a dimensão de $\ker(G \circ F + \mathbb{I})$?)
- 7. Mostre que o operador derivação no espaço $P_n(\mathbb{R})$ é nilpotente.