Lista de exercícios Aula 13 – Núcleo e Imagem Álgebra Linear

Prof. Elton Carvalho − ECT − UFRN

Questionário e Aula Síncrona: Quinta-feira 09/12/2021

- 1. Mostre que, se $T: V \to W$ é uma transformação linear,
 - (a) Im(T) é um subespaço de W.
 - (b) ker(T) é um subespaço de V.
- 2. Dados $F: V \to W$ transformação linear injetora e u_1, \ldots, u_k vetores L.I. em V, mostre que $\{T(u_1), \ldots, T(u_k)\}$ é L.I.
- 3. A transformação $T: M_{2\times 2} \to M_{2\times 2}$ que leva toda matriz à sua transposta é definitivamente linear. Quais dessas propriedades são verdadeiras? Justifique.
 - (a) T^2 dado por $T^2(M) = T(T(M))$ é a transformação identidade.
 - (b) O núcleo de *T* contém apenas a matriz nula.
 - (c) Todas as matrizes 2×2 estão na imagem de T.
 - (d) T(M) = -M é impossível.
- 4. Seja $F: \mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear dada por F(x,y,z) = (x+y,2x-y+z).
 - (a) Obtenha uma base e a dimensão de ker(F)
 - (b) Obtenha uma base e a dimensão de Im(F)
- 5. Refaça o exercício anterior, agora para:
 - (a) $F: V \to V$, onde V é um espaço vetorial finitamente gerado qualquer e F(v) = 0, a transformação nula.
 - (b) $F: V \to V$, onde V é um espaço vetorial finitamente gerado qualquer e F(v) = v, a transformação identidade.
 - (c) $F: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ dada por D(p(t)) = p'(t)
 - (d) $F: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ dada por $F(p(t)) = p(t) + t^2 p'(t)$
- 6. Mostre que $F: \mathbb{R}^3 \to \mathbb{R}^4$ dada por F(x,y,z) = (x,x-y,y-z,z) é injetora mas não é isomorfismo de \mathbb{R}^3 em \mathbb{R}^4 .
- 7. Mostre que o \mathbb{R}^2 é isomorfo ao subespaço $U=\{(x,y,z)\in\mathbb{R}^3|z=0\}$ do \mathbb{R}^3 . (Sugestão: encontre uma transformação linear bijetora entre esses espaços)