_____ Matrícula: __

Questão:	1	2	3	4	5	6	7	8	Total
Pontos:	5	5	5	20	20	10	10	25	100
Obtidos:									

Verdadeiro ou falso

Assinale Verdadeiro ou Falso nas questões abaixo. Utilize caneta azul ou preta para marcar sua resposta final. Rasuras na marcação a caneta invalidam a resposta. Marcações a lápis serão ignoradas. Em cada questão há pelo menos um item verdadeiro e um falso. Tentativas de marcar todos os itens com a mesma resposta implicam na anulação da questão. As respostas falsas devem ser justificadas no quadro reservado ou nas folhas de resposta

1. (5	pontos)
-------	---------

É correto afirmar que

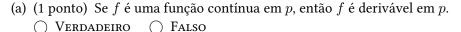
(a)	(1 ponto)	Seja f	uma função	tal que	$\lim_{x\to 0}$	f(x) =	= 6.	Então	existe	um	número	δ ta	ıl qu	e se
	0 < x <	δ então	$o \mid f(x) - 6$	< 1.										
	O VERDA	ADEIRO	○ Falso											
(1.)		0 6 1	1	. ~	1.	c ()	0/	`						

(b)	(1 ponto)	Se f é un	n polinômio,	então	$\lim f$	$\dot{x}(x)$	=	f(p)).
	_		_		$x \rightarrow p$. ,			
			О Г						

VERDADEIRO
$$\bigcirc$$
 FALSO

(1 ponto) Se $\lim [f(x)g(x)]$ existe, então ele deve valer $f(6)g(6)$

(c) (1 ponto) Se
$$\lim_{x\to 6} [f(x)g(x)]$$
 existe, então ele deve valer $f(6)g(6)$.
 \bigcirc Verdadeiro \bigcirc Falso


(d) (1 ponto) Se
$$\lim_{x\to 0} f(x) = +\infty$$
 e $\lim_{x\to 0} g(x) = +\infty$, então $\lim_{x\to 0} \left[\ f(x) - g(x) \ \right] = 0$.
 O Verdadeiro O Falso

(e)	(1 ponto) Se f é contínua en	n [-1; 1] com	f(-1) = 4	e f(1) = 3,	então exist	e um número
	real r tal que $ r < 1$ e $f(r)$	$=\pi$.				

O VERDADEIRO O FALSO

2. (5 pontos)

É correto afirmar que

$$\begin{array}{c} \bigcirc \text{ Verdadeiro } \bigcirc \text{ Falso} \\ \text{(b) (1 ponto) } \left[\frac{\mathrm{d}^5}{\mathrm{d}x^5} \left(x^5 + 17x^4 - \pi x^3 + \sqrt{3}x^2 - 3x + 2 \right) \right]_{x=42} = 5! \\ \bigcirc \text{ Verdadeiro } \bigcirc \text{ Falso} \end{array}$$

(c) (1 ponto) Se
$$f$$
 e g são deriváveis, então $\frac{\mathrm{d}}{\mathrm{d}x}[f(x)g(x)] = f'(x)g'(x).$

(1 ponto) Se
$$f$$
 e g são deriváveis, então $\frac{1}{dx}[f(x)g(x)] = f'(x)g'(x)$.

(2 VERDADEIRO () FALSO

(d) (1 ponto) Se
$$f'(c) = 0$$
, então f possui um máximo local ou um mínimo local em c .
 \bigcirc Verdadeiro \bigcirc Falso

(e) (1 ponto) Se
$$f$$
 é crescente e $f(x)>0$ no intervalo I , então $g(x)=1/f(x)$ é decrescente nesse intervalo.

3. (5 pontos)

É correto afirmar que

- (a) (1 ponto) Seja f contínua. $\int x f(x) dx = x \int f(x) dx$
 - VERDADEIRO FALSO
- (b) (1 ponto) Todas as funções contínuas têm primitiva.
 - \bigcirc Verdadeiro \bigcirc Falso
- (c) (1 ponto) $\lim_{x\to 0} \frac{x^2-1}{x^2-x} = \lim_{x\to 0} \frac{2x}{2x-1}$ $\bigcirc \text{ Verdadeiro } \bigcirc \text{ Falso}$
- (d) (1 ponto) $\frac{x(x^2+4)}{x^2-4}$ pode ser escrito na forma $\frac{A}{x+2}+\frac{B}{x-2}$, A e B constantes. \bigcirc Verdadeiro \bigcirc Falso
- (e) (1 ponto) $\int f(x)g'(x)\,\mathrm{d}x = f(x)g(x) \int f'(x)g(x)\,\mathrm{d}x$ $\bigcirc \text{ Verdadeiro }\bigcirc \text{ Falso}$

Justi	FICATIVAS DOS ITENS FALSOS

Resolver estas questões na folha fornecida. Não é permitido utilizar folhas de outra origem, nem mesmo para rascunho. É necessário apresentar explicitamente todo o processo de resolução ou justificar a resposta. A solução pode ser feita a lápis, mas é recomendado destacar a resposta final a caneta. Não é necessário (e portanto não é permitido) o uso de calculadoras. Frações e raízes quadradas podem ser apenas indicadas mas devem ser simplificadas.

4. (20 pontos)

Calcule os seguintes limites:

(a) (4 pontos)
$$\lim_{x\to 0} x \operatorname{sen} \frac{1}{x}$$

(d) (4 pontos)
$$\lim_{x \to 1} \frac{x^3 - 2x^2 + 1}{x^3 - 1}$$

(b) (4 pontos)
$$\lim_{x\to 0} \frac{\tan x}{x}$$

(e) (4 pontos)
$$\lim_{x \to +\infty} \frac{\ln x}{x}$$

(b) (4 pontos)
$$\lim_{x \to 0} \frac{\tan x}{x}$$

(c) (4 pontos) $\lim_{x \to +\infty} \frac{5x^4 - 2x + 1}{4x^4 + 3x + 2}$

5. (20 pontos)

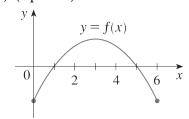
Obtenha $\frac{\mathrm{d}y}{\mathrm{d}x}$

(a) (5 pontos)
$$y = \frac{\sin mx}{x}$$

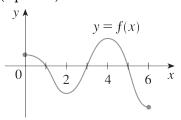
(c) (5 pontos)
$$y = x^x$$

(b) (5 pontos)
$$y = sen(cos x)$$

(d) (5 pontos)
$$x^2 + 4y^2 = 2$$
, $y > 0$


6. (10 pontos)

Obtenha o polinômio de Taylor de ordem 5 de $f(x) = \ln(x)$, em torno de $x_0 = 1$.


7. (10 pontos)

Abaixo encontra-se o gráfico de f. Esboce gráfico da derivada de f.

(a) (5 pontos)

(b) (5 pontos)

8. (25 pontos)

Calcule

(a) (5 pontos)
$$\int \frac{x+3}{x^2 - 3x + 2} \, \mathrm{d}x$$

(d) (5 pontos)
$$\int \frac{\mathrm{d}x}{\sqrt{4-x^2}}$$

(b) (5 pontos)
$$\int \cos^2 x \, \mathrm{d}x$$

(e) (5 pontos)
$$\int \sec x \, dx$$

(c) (5 pontos)
$$\int x^3 \cos(x^2) dx$$