Lista de exercícios 4 Álgebra Linear

Prof. Elton Carvalho — ECT — UFRN 2020.1

1. Considerando o espaço euclidiano 1 \mathbb{R}^3 com o produto interno usual, calcule $\langle u, v \rangle$ nos seguintes casos:

(a)
$$\mathbf{u} = (\frac{1}{2}, 2, 1)$$
 e $\mathbf{v} = (4, 1, -3)$

(c)
$$\mathbf{u} = (1, 0, 1) e \mathbf{v} = (1, 0, -1)$$

(b)
$$\mathbf{u} = (2, 1, 0) e \mathbf{v} = (4, 0, 2)$$

2. Mostre que, em um espaço euclidiano complexo, todo produto interno tem as seguintes propriedades:

(a)
$$\langle \alpha \boldsymbol{u}, \beta \boldsymbol{v} \rangle = \overline{\alpha} \beta \langle \boldsymbol{u}, \boldsymbol{v} \rangle$$

(b)
$$\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \overline{\alpha} \langle \mathbf{u}, \mathbf{w} \rangle + \overline{\beta} \langle \mathbf{v}, \mathbf{w} \rangle$$

3. Sejam $\boldsymbol{u}=(u_1,\ldots,u_n)$ e $\boldsymbol{v}=(v_1,\ldots,v_n)$ vetores arbitrários de \mathbb{C}^n . Verifique se $\langle \boldsymbol{u},\boldsymbol{v}\rangle$, definido em cada item abaixo, é um produto interno em \mathbb{C}^n . Em caso negativo, enumere os axiomas que não são verificados.

(a)
$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{i=1}^{n} u_i |v_i|$$

(d)
$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \left(\sum_{i=1}^{n} u_i^2 v_i^2 \right)^{\frac{1}{2}}$$

(b)
$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \left| \sum_{i=1}^n u_i v_i \right|$$

(e)
$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{i=1}^{n} (u_i + v_i)^2 - \sum_{i=1}^{n} u_i^2 - \sum_{i=1}^{n} v_i^2$$

(c)
$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{i=1}^{n} u_i \sum_{j=1}^{n} v_j$$

Nota: para
$$v_i \in \mathbb{C}$$
, $|v_i| = \sqrt{\overline{v_i}v_i}$.

4. Usando o produto interno $\langle f(t), g(t) \rangle = \int_0^1 f(t)g(t) dt$ em $P_2(\mathbb{R})$, calcule o produto interno entre:

(a)
$$f(t) = t e g(t) = 1 - t^2$$

(b)
$$f(t) = t - \frac{1}{2} e g(t) = \frac{1}{2} - (t - \frac{1}{2}).$$

5. No espaço vetorial real C([1, e]), das funções contínuas no intervalo [1, e] e produto interno dado por:

$$\langle f, g \rangle = \int_{1}^{e} (\ln t) f(t) g(t) dt,$$

Determine um polinômio linear g(t) = a + bt tal que $\langle 1, g \rangle = 0$.

¹Um espaço euclidiano é um espaço vetorial dotado de um produto interno